Braın Based Classıfıcatıon Wıth Image Processıng And Deep Artıfıcıal Intellıgence Methods In Matlab Software Envıronment


Abstract views: 15 / PDF downloads: 14

Authors

  • Ali Berkan Ural Kafkas University
  • Mehmet Can Çalım Kafkas University

DOI:

https://doi.org/10.5281/zenodo.14188652

Keywords:

Brain Tumors, Stroke, Image Processing, Deep Learning, Pre-Diagnostic Methods

Abstract

Medical image processing is an important interdisciplinary field that involves advanced
integrated computational techniques with medical sciences to enhance the visualization, analysis, and
interpretation of medical dataset or images. It consists from the use of algorithms and tools for image
acquisition, segmentation, enhancement, reconstruction, and classification, enabling healthcare
professionals to diagnose diseases more accurately and efficiently. Common modalities include MRI, CT
scans, X-rays, and ultrasound, with applications some areas such as cancer detection, cardiovascular
analysis, and neurological assessment. Recent advances in Artificial Intelligence and Machine Learning,
especially Deep Learning, have significantly improved automated image analysis, enabling faster and
more robust identification of pathologies. The integration of artificial intelligence and big data further
holds the potential to develop the personalized medicine, clinical decision-making, treatment planning,
etc. Despite its progress, challenges remain in terms of data standardization, privacy concerns, and the
need for robust validation of models in clinical settings. Brain image-based classification using image
processing and deep learning methods in MATLAB is a crucial and popular area in medical diagnostics,
aiding in the detection and categorization of neurological conditions or disorders. This review approach
combines traditional image processing techniques such as image segmentation, feature extraction, and
enhancement with cutting-edge deep learning models to classify brain abnormalities, including tumors
and stroke for pre-diagnosing phase. However, challenges remain, including the need for large, well
labeled datasets and computational resources, as well as addressing the generalization of models across
diverse patient populations.

Downloads

Download data is not yet available.

Author Biographies

Ali Berkan Ural, Kafkas University

Department of Electrical Electronics Engineering, Circuit and Systems/Biomedical, Kars, Turkey

Mehmet Can Çalım, Kafkas University

Faculty of Economics and Administrative Sciences, Department of Management Information Systems, Kars, Turkey

References

Kreisl, T. N., Toothaker, T., Karimi, S., & DeAngelis, L. M. (2008). Ischemic stroke in patients with primary brain tumors. Neurology, 70(24), 2314-2320.

Komlodi-Pasztor, E., Gilbert, M. R., & Armstrong, T. S. (2022). Diagnosis and management of stroke in adults with primary brain tumor. Current oncology reports, 24(10), 1251-1259.

Morgenstern, L. B., & Frankowski, R. F. (1999). Brain tumor masquerading as stroke. Journal of neuro-oncology, 44, 47-52.

Mangla, R., Ekhom, S., Jahromi, B. S., Almast, J., Mangla, M., & Westesson, P. L. (2014). CT perfusion in acute stroke: know the mimics, potential pitfalls, artifacts, and technical errors. Emergency radiology, 21, 49-65.

Guan, R., Zou, W., Dai, X., Yu, X., Liu, H., Chen, Q., & Teng, W. (2018). Mitophagy, a potential therapeutic target for stroke. Journal of biomedical science, 25, 1-16.

Antczak, A., Filipska, K., & Raszka, A. (2017). Care Issues of the Patient after a Stroke—Case Report. Pielęgniarstwo Neurologiczne i Neurochirurgiczne, 6(1), 28-32.

[ Li, M. D., Lang, M., Deng, F., Chang, K., Buch, K., Rincon, S., ... & Kalpathy-Cramer, J. (2021). Analysis of stroke detection during the COVID-19 pandemic using natural language processing of radiology reports. American Journal of Neuroradiology, 42(3), 429-434.

Fueanggan, S., Chokchaitam, S., & Muengtaweepongsa, S. (2011, May). Prediction of ischemic stroke area from CT perfusion images of CBV and CBF based on digital image processing techniques. In The 2011 IEEE/ICME International Conference on Complex Medical Engineering (pp. 174-178). IEEE.

González, R. G., & Schwamm, L. H. (2016). Imaging acute ischemic stroke. Handbook of clinical neurology, 135, 293-315.

Kaya, B., & Önal, M. (2023). A CNN transfer learning‐based approach for segmentation and classification of brain stroke from noncontrast CT images. International Journal of Imaging Systems and Technology, 33(4), 1335-1352.

Han, T., Nunes, V. X., Souza, L. F. D. F., Marques, A. G., Silva, I. C. L., Junior, M. A. A. F., ... & Reboucas Filho, P. P. (2020). Internet of medical things—based on deep learning techniques for segmentation of lung and stroke regions in CT scans. IEEE Access, 8, 71117-71135.

To, M. N. N., Kim, H. J., Roh, H. G., Cho, Y. S., & Kwak, J. T. (2020). Deep regression neural networks for collateral imaging from dynamic susceptibility contrast-enhanced magnetic resonance perfusion in acute ischemic stroke. International Journal of Computer Assisted Radiology and Surgery, 15, 151-162.

Garg, R., Oh, E., Naidech, A., Kording, K., & Prabhakaran, S. (2019). Automating ischemic stroke subtype classification using machine learning and natural language processing. Journal of Stroke and Cerebrovascular Diseases, 28(7), 2045-2051.

Dolatabadi, E., Taati, B., & Mihailidis, A. (2016, August). Automated classification of pathological gait after stroke using ubiquitous sensing technology. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6150-6153). IEEE.

Subudhi, A., Dash, M., & Sabut, S. (2020). Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybernetics and Biomedical Engineering, 40(1), 277-289.

Azman, I. H., Saad, N. M., Abdullah, A. R., Hamzah, R. A., & Samsudin, A. (2023). Automated CAD System for Early Stroke Diagnosis. International Journal of Advanced Computer Science and Applications, 14(8).

Nowinski, W. L., Qian, G., & Hanley, D. F. (2014). A CAD system for hemorrhagic stroke. The neuroradiology journal, 27(4), 409-416.

Marciniec, M., Sapko, K., Kulczyński, M., Popek-Marciniec, S., Szczepańska-Szerej, A., & Rejdak, K. (2019). Non-traumatic cervical artery dissection and ischemic stroke: a narrative review of recent research. Clinical neurology and neurosurgery, 187, 105561.

Tang, F. H., Ng, D. K., & Chow, D. H. (2011). An image feature approach for computer-aided detection of ischemic stroke. Computers in biology and medicine, 41(7), 529-536.

Weimar, C., Kraywinkel, K., Hagemeister, C., Haaß, A., Katsarava, Z., Brunner, F., ... & Diener, H. C. (2010). Recurrent stroke after cervical artery dissection. Journal of Neurology, Neurosurgery & Psychiatry, 81(8), 869-873.

Reboucas Filho, P. P., Sarmento, R. M., Holanda, G. B., & de Alencar Lima, D. (2017). New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities. Computer methods and programs in biomedicine, 148, 27-43.

Hazard, R. H., Alam, N., Chowdhury, H. R., Adair, T., Alam, S., Streatfield, P. K., ... & Lopez, A. D. (2018). Comparing tariff and medical assistant assigned causes of death from verbal autopsy interviews in Matlab, Bangladesh: implications for a health and demographic surveillance system. Population health metrics, 16, 1-8.

Salleh, A., Yang, C. C., Singh, M. S. J., & Islam, M. T. (2019). Development of antipodal Vivaldi antenna for microwave brain stroke imaging system. Int. J. Eng. Technol, 8(3), 162-168.

Popoola, L. T., Babagana, G., & Susu, A. A. (2013). Thrombo-embolic stroke prediction and diagnosis using artificial neural network and genetic algorithm. International Journal of Research and Reviews in Applied Sciences, 14(3), 655-661.

Ashrafullah, M. D., & Sultana, N. (2017). Developing a GUI using MATLAB in detecting brain stroke from ultrasonic data (Doctoral dissertation, East West University).

Totad, S. R., Sowmya, B. J., Boppudi, P., Yaswanth, N., & Nivedith, I. (2023, November). Brain Tumour Detection and Segmentation using CNN Architecture and U-Net Architecture. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-5). IEEE.

Deshmukh, S., & Tiwari, D. (2022). Detection and Classification of Brain Tumor Using Convolutional Neural Network (CNN). In Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021) (pp. 289-303). Springer International Publishing.

Musallam, A. S., Sherif, A. S., & Hussein, M. K. (2022). A new convolutional neural network architecture for automatic detection of brain tumors in magnetic resonance imaging images. IEEE access, 10, 2775-2782.

Kukadiya, B. (2024). Brain Tumor Identification using Brain MRI with Deep Learning.

https://www.nih.gov/news-events/news-releases/nih-clinical-center-releases-dataset-32000-ct-images

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset

Neethu, S., & Venkataraman, D. (2015). Stroke detection in brain using CT images. In Artificial Intelligence and Evolutionary Algorithms in Engineering Systems: Proceedings of ICAEES 2014, Volume 1 (pp. 379-386). Springer India.

Sivakumar, P., & Ganeshkumar, P. (2017). An efficient automated methodology for detecting and segmenting the ischemic stroke in brain MRI images. International Journal of Imaging Systems and Technology, 27(3), 265-272.

Neethu, S., & Venkataraman, D. (2015). Stroke detection in brain using CT images. In Artificial Intelligence and Evolutionary Algorithms in Engineering Systems: Proceedings of ICAEES 2014, Volume 1 (pp. 379-386). Springer India.

Shakunthala, M., & HelenPrabha, K. (2019, February). Preprocessing analysis of brain images with atherosclerosis. In 2019 IEEE international conference on electrical, computer and communication technologies (ICECCT) (pp. 1-5). IEEE.

Alnowami, M., Taha, E., Alsebaeai, S., Anwar, S. M., & Alhawsawi, A. (2022). MR image normalization dilemma and the accuracy of brain tumor classification model. Journal of Radiation Research and Applied Sciences, 15(3), 33-39.

Ulku, E. E., & Camurcu, A. Y. (2013, November). Computer aided brain tumor detection with histogram equalization and morphological image processing techniques. In 2013 International Conference on Electronics, Computer and Computation (ICECCO) (pp. 48-51). IEEE.

Benson, C. C., & Lajish, V. L. (2014, March). Morphology based enhancement and skull stripping of MRI brain images. In 2014 International Conference on intelligent computing applications (pp. 254-257). IEEE.

Kalavathi, P., & Prasath, V. S. (2016). Methods on skull stripping of MRI head scan images—a review. Journal of digital imaging, 29, 365-379.

Razzaq, S., Mubeen, N., Kiran, U., Asghar, M. A., & Fawad, F. (2020, October). Brain tumor detection from mri images using bag of features and deep neural network. In 2020 International Symposium on Recent Advances in Electrical Engineering & Computer Sciences (RAEE & CS) (Vol. 5, pp. 1-6). IEEE.

Alnowami, M., Taha, E., Alsebaeai, S., Anwar, S. M., & Alhawsawi, A. (2022). MR image normalization dilemma and the accuracy of brain tumor classification model. Journal of Radiation Research and Applied Sciences, 15(3), 33-39.

Ramamoorthy, M., Qamar, S., Manikandan, R., Jhanjhi, N. Z., Masud, M., & AlZain, M. A. (2022, June). Earlier detection of brain tumor by pre-processing based on histogram equalization with neural network. In Healthcare (Vol. 10, No. 7, p. 1218). MDPI.

Mzoughi, H., Njeh, I., Slima, M. B., & Hamida, A. B. (2018, March). Histogram equalization-based techniques for contrast enhancement of MRI brain Glioma tumor images: Comparative study. In 2018 4th International conference on advanced technologies for signal and image processing (ATSIP) (pp. 1-6). IEEE.

Zebari, N. A., Alkurdi, A. A., Marqas, R. B., & Salih, M. S. (2023). Enhancing Brain Tumor Classification with Data Augmentation and DenseNet121. Academic Journal of Nawroz University, 12(4), 323-334.

Biswas, A., Bhattacharya, P., Maity, S. P., & Banik, R. (2023). Data augmentation for improved brain tumor segmentation. IETE Journal of Research, 69(5), 2772-2782.

Mzoughi, H., Njeh, I., Ben Slima, M., Ben Hamida, A., Mhiri, C., & Ben Mahfoudh, K. (2019). Denoising and contrast-enhancement approach of magnetic resonance imaging glioblastoma brain tumors. Journal of Medical Imaging, 6(4), 044002-044002.

Abin, D., Thepade, S., Vibhute, Y., Pargaonkar, S., Kolase, V., & Chougule, P. (2022, May). Brain Tumor Image Enhancement Using Blending of Contrast Enhancement Techniques. In International Conference on Image Processing and Capsule Networks (pp. 736-747). Cham: Springer International Publishing.

Sarkar, A., Santiago, R. J., Smith, R., & Kassaee, A. (2005). Comparison of manual vs. automated multimodality (CT-MRI) image registration for brain tumors. Medical Dosimetry, 30(1), 20-24.

Baraiya, N., & Modi, H. (2016). Comparative study of different methods for brain tumor extraction from MRI images using image processing. Indian Journal of Science and Technology, 9(4), 1-5.

Sharif, M., Tanvir, U., Munir, E. U., Khan, M. A., & Yasmin, M. (2024). Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. Journal of ambient intelligence and humanized computing, 1-20.

Husham, S., Mustapha, A., Mostafa, S. A., Al-Obaidi, M. K., Mohammed, M. A., Abdulmaged, A. I., & George, S. T. (2020). Comparative analysis between active contour and otsu thresholding segmentation algorithms in segmenting brain tumor magnetic resonance imaging. Journal of Information Technology Management, 12(Special Issue: Deep Learning for Visual Information Analytics and Management.), 48-61.

Borole, V. Y., Nimbhore, S. S., & Kawthekar, D. S. S. (2015). Image processing techniques for brain tumor detection: A review. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 4(5), 2.

Aslam, A., Khan, E., & Beg, M. S. (2015). Improved edge detection algorithm for brain tumor segmentation. Procedia Computer Science, 58, 430-437.

Hazra, A., Dey, A., Gupta, S. K., & Ansari, M. A. (2017, August). Brain tumor detection based on segmentation using MATLAB. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 425-430). IEEE.

Biratu, E. S., Schwenker, F., Debelee, T. G., Kebede, S. R., Negera, W. G., & Molla, H. T. (2021). Enhanced region growing for brain tumor MR image segmentation. Journal of Imaging, 7(2), 22.

Viji, K. A., & Jayakumari, J. (2011, July). Automatic detection of brain tumor based on magnetic resonance image using CAD System with watershed segmentation. In 2011 international conference on signal processing, communication, computing and networking technologies (pp. 145-150). IEEE.

Mandle, A. K., Sahu, S. P., & Gupta, G. (2022). Brain tumor segmentation and classification in MRI using clustering and kernel-based SVM. Biomedical and Pharmacology Journal, 15(2), 699-716.

Abdel-Maksoud, E., Elmogy, M., & Al-Awadi, R. (2015). Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal, 16(1), 71-81.

Cinar, N., Ozcan, A., & Kaya, M. (2022). A hybrid DenseNet121-UNet model for brain tumor segmentation from MR Images. Biomedical Signal Processing and Control, 76, 103647.

Alqazzaz, S., Sun, X., Yang, X., & Nokes, L. (2019). Automated brain tumor segmentation on multi-modal MR image using SegNet. Computational visual media, 5, 209-219.

Kaldera, H. N. T. K., Gunasekara, S. R., & Dissanayake, M. B. (2019, March). Brain tumor classification and segmentation using faster R-CNN. In 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-6). IEEE.

Kesav, N., & Jibukumar, M. G. (2022). Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN. Journal of King Saud University-Computer and Information Sciences, 34(8), 6229-6242.

Mzoughi, H., Njeh, I., Wali, A., Slima, M. B., BenHamida, A., Mhiri, C., & Mahfoudhe, K. B. (2020). Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification. Journal of Digital Imaging, 33, 903-915.

Jesson, A., & Arbel, T. (2017, September). Brain tumor segmentation using a 3D FCN with multi-scale loss. In International MICCAI Brainlesion Workshop (pp. 392-402). Cham: Springer International Publishing.

Choudhury, C. L., Mahanty, C., Kumar, R., & Mishra, B. K. (2020, March). Brain tumor detection and classification using convolutional neural network and deep neural network. In 2020 international conference on computer science, engineering and applications (ICCSEA) (pp. 1-4). IEEE.

Lamrani, D., Cherradi, B., El Gannour, O., Bouqentar, M. A., & Bahatti, L. (2022). Brain tumor detection using mri images and convolutional neural network. International Journal of Advanced Computer Science and Applications, 13(7).

Badža, M. M., & Barjaktarović, M. Č. (2020). Classification of brain tumors from MRI images using a convolutional neural network. Applied Sciences, 10(6), 1999.

Downloads

Published

2024-11-16

How to Cite

Ural, A. B., & Çalım, M. C. (2024). Braın Based Classıfıcatıon Wıth Image Processıng And Deep Artıfıcıal Intellıgence Methods In Matlab Software Envıronment . International Journal of Advanced Natural Sciences and Engineering Researches, 8(10), 57–75. https://doi.org/10.5281/zenodo.14188652

Issue

Section

Articles