Wave Packet Clustering of Self-focusing Free Particle
Abstract views: 29 / PDF downloads: 10
DOI:
https://doi.org/10.5281/zenodo.14188660Keywords:
Free Particle, Machine Learning, Self-Focusing, K-Means Clustering, Inverted Harmonic OscillatorAbstract
We consider free particle wave packets. We introduce the concept of wave packet clustering.
We cluster solutions of self-focusing free particles. We apply machine learning algorithm to cluster these
solutions. We show that solutions of self-focusing free particle can be clustered with k-means clustering.
Downloads
References
V. V. Chistyakov, “On quantum analogue of dynamical stabilisation of inverted harmonic oscillator by time periodical uniform field”, Pramana - J. Phys. 91 57 2018.
R. D. Mota, D. Ojeda-Guillen, M. Salazar-Ramirez and V. D. Granados, “Non-Hermitian inverted harmonic oscillator-type Hamiltonians generated from supersymmetry with reflections” Mod. Phys. Lett. A 34 1950028, 2019.
A.K. Roy, “Quantum confinement in 1D systems through an imaginary-time evolution method”, Mod. Phys. Lett. A 30 37 1550176, 2015.
S-C, Pei and C-L, Liu, “Differential commuting operator and closed-form eigenfunctions for linear canonical transforms”, J. Opt. Soc. Am.A, 30 2096, 2013.
O. Steuernagel, “Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes”, Eur. Phys. J. Plus. 129 114, 2014.
I. A. Pedrosa, A.L. de Lima and A.M. deMCarvalho, “Gaussian wave packet states of a generalized inverted harmonic oscillator with time-dependent mass and frequency”, Can. J. Phys. 93 841, 2015.
M. Maamache and J. R. Choi, “Quantum-classical correspondence for the inverted oscillator”, Chinese Phys. C, 41 113 106, 2017.
C. A. Munoz, J. Rueda-Paz and K. B. Wolf, “Discrete repulsive oscillator wavefunctions”, J. Phys. A: Math. Theor. 42 485210, 2009.
D. Bermudez, J. D. C. Fernandez, “Factorization method and new potentials from the inverted oscillator”, Ann. of Phys. 333 290, 2013.
V. Subramanyan, S. S. Hegde and S. Vishveshwara, “Physics of the Inverted Harmonic Oscillator: From the lowest Landau level to event horizons”, arXiv:2012.09875, 2020.
C. Yuce, A. Kilic and A. Coruh, “Inverted oscillator”, Phys. Scr. 74 114, 2006.
C. Yuce, “Self-accelerating parabolic cylinder waves in 1-D”, Phys. Lett. A, 380 45 3791, 2016.
I. A. Pedrosa, E. Jr Nogueira and I. Guedes, “On the dynamics of a time-dependent mesoscopic LC circuit with a negative inductance”, Mod. Phys. Lett. A, 30 1650122, 2016.
S. Choi, R. Onofrio and B. Sundaram, “Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies”, Phys. Rev. A, 84 5 051601(R), 2011.
S. Choi, R. Onofrio and B. Sundaram, “Squeezing and robustness of frictionless cooling strategies”, Phys. Rev. A, 86 043436, 2012.
S. Choi, R. Onofrio and B. Sundaram, “Ehrenfest dynamics and frictionless cooling methods”, Phys. Rev. A, 88 053401, 2013.
A. R. Urzua et al, “Light propagation in inhomogeneous media, coupled quantum harmonic oscillators and phase transitions”, Sci. Rep. 9 16800, 2019.
Y-G. Chen, X. Luo, F-Y. Li, B. Chen and Y. Yu, “Quantum chaos associated with an emergent ergosurface in the transition layer between type-I and type-II Weyl semimetals”, Phys. Rev. B 101 035130, 2020.
C. Yuce, “Quantum inverted harmonic potential”, Phys. Scr. 96 105006. 2021.
G. Bonaccorso, Machine Learning Algorithms, Packt Publishing, Livery Place, 35 Livery Street, Birmingham B3 2PB, UK, 2017.
C. Yuce, “Eigenstate clustering around exceptional points”, Phys. Rev. A, 102, 32203–32203, 2020.
Z. Ozcakmakli Turker, “Clustering of Laguerre-Gaussian beams”, AIP Conf. Proc. 2802, 120001, 2024.