Sonlu Elemanlar Yöntemi Kullanılarak Ti-6Al-4V’nin Yüksek Hızlı Mikro Frezelenmesinde Kesme Kuvvetlerinin İncelenmesi


Abstract views: 9 / PDF downloads: 12

Authors

  • Aybars MAHMAT Munzur University

DOI:

https://doi.org/10.5281/zenodo.14188731

Abstract

Bu çalışmada Ti6Al4V alaşımının mikro frezelenmesinde kesme hızı, ilerleme hızı ve soğutma
yönteminin kesme kuvvetine olan etkileri deneysel ve sayısal olarak belirlenmiştir. Ti6Al4V alaşımlarının
geleneksel soğutma yöntemleriyle işlenmesi işlenebilirliği kısıtlamaktadır. Bu çalışmanın amacı Ti6Al4V
alaşımını farklı soğutma yöntemleri (minimum miktarda yağlama(MMY) ve kuru) ve işleme
parametrelerinin uygulanmasıyla işlenebilirliğini artırmaktır. İşleme parametreleri, kesme hızı (25000,
30.000 ve 35.000 rpm), ilerleme hızı (0,12, 0,15 ve 0,175 mm/dev) ve kesme derinliği (0,02 mm) olarak
seçilmiştir. Bu çalışma sonucunda deneysel sonuçların sonlu elemanlar analizi sonuçlarına oldukça yakın
olduğu belirlenmiştir. MMY soğutma yöntemi kuru işlemeye göre hem deneysel hem de analiz
sonuçlarına göre kesme kuvvetini azaltmıştır. Kesme hızının artması kesme kuvvetini azaltırken ilerleme
hızının artması kesme kuvvetini artırmıştır.

Downloads

Download data is not yet available.

Author Biography

Aybars MAHMAT, Munzur University

 Faculty of Engineering, Mechanical Engineering, Tunceli, Turkey

References

Babitsky, V. I., Mitrofanov, A. V., & Silberschmidt, V. V. (2004). Ultrasonically assisted turning of aviation materials: Simulations and experimental study. Ultrasonics, 42(1), 81-86. https://doi.org/10.1016/j.ultras.2004.02.001

Bandapalli, C., Sutaria, B. M., Bhatt, D. V., & Singh, K. K. (2017). Experimental Investigation and Estimation of Surface Roughness using ANN, GMDH & MRA models in High Speed Micro End Milling of Titanium Alloy (Grade-5). Materials Today: Proceedings, 4(2, Part A), 1019-1028. https://doi.org/10.1016/j.matpr.2017.01.115

Bandapalli, C., Sutaria, B. M., Prasad Bhatt, D. V., & Singh, K. K. (2018). Tool Wear Analysis of Micro End Mills—Uncoated and PVD Coated TiAlN & AlTiN in High Speed Micro Milling of Titanium Alloy—Ti-0.3Mo-0.8Ni. Procedia CIRP, 77, 626-629. https://doi.org/10.1016/j.procir.2018.08.191

Bogdan-Chudy, M., Niesłony, P., Gupta, M. K., Wojciechowski, S., Maruda, R. W., Gawlik, J., & Królczyk, G. M. (2022). Tribological and thermal behavior with wear identification in contact interaction of the Ti6Al4V-sintered carbide with AlTiN coatings pair. Tribology International, 167, 107394. https://doi.org/10.1016/j.triboint.2021.107394

Davoudinejad, A., Parenti, P., & Annoni, M. (2017). 3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6. Frontiers of Mechanical Engineering, 12(2), 203-214. https://doi.org/10.1007/s11465-017-0421-6

Gaurav, G., Sharma, A., Dangayach, G. S., & Meena, M. L. (2021). Bibliometric analysis of machining of titanium alloy research. Materials Today: Proceedings, 44, 4031-4038. https://doi.org/10.1016/j.matpr.2020.10.217

Ghoreishi, R., Roohi, A. H., & Ghadikolaei, A. D. (2018). Analysis of the influence of cutting parameters on surface roughness and cutting forces in high speed face milling of Al/SiC MMC. Materials Research Express, 5(8), 086521. https://doi.org/10.1088/2053-1591/aad164

Gong, F., Zhao, J., Jiang, Y., Tao, H., Li, Z., & Zang, J. (2017). Fatigue failure of coated carbide tool and its influence on cutting performance in face milling SKD11 hardened steel. International Journal of Refractory Metals and Hard Materials, 64, 27-34. https://doi.org/10.1016/j.ijrmhm.2017.01.001

Hadad, M., & Sadeghi, B. (2012). Thermal analysis of minimum quantity lubrication-MQL grinding process. International Journal of Machine Tools and Manufacture, 63, 1-15. https://doi.org/10.1016/j.ijmachtools.2012.07.003

Jamil, M., Zhao, W., He, N., Gupta, M. K., Sarikaya, M., Khan, A. M., R, S. M., Siengchin, S., & Pimenov, D. Y. (2021). Sustainable milling of Ti–6Al–4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. Journal of Cleaner Production, 281, 125374. https://doi.org/10.1016/j.jclepro.2020.125374

Li, B., Zhang, S., Zhang, Q., Chen, J., & Zhang, J. (2018). Modelling of phase transformations induced by thermo-mechanical loads considering stress-strain effects in hard milling of AISI H13 steel. International Journal of Mechanical Sciences, 149, 241-253. https://doi.org/10.1016/j.ijmecsci.2018.10.010

Lu, Z., Zhang, D., Zhang, X., & Peng, Z. (2020). Effects of high-pressure coolant on cutting performance of high-speed ultrasonic vibration cutting titanium alloy. Journal of Materials Processing Technology, 279, 116584. https://doi.org/10.1016/j.jmatprotec.2019.116584

Molaiekiya, F., Aramesh, M., & Veldhuis, S. C. (2020). Chip formation and tribological behavior in high-speed milling of IN718 with ceramic tools. Wear, 446-447, 203191. https://doi.org/10.1016/j.wear.2020.203191

Ramoni, M., Shanmugam, R., Ross, N. S., & Gupta, M. K. (2021). An experimental investigation of hybrid manufactured SLM based Al-Si10-Mg alloy under mist cooling conditions. Journal of Manufacturing Processes, 70, 225-235. https://doi.org/10.1016/j.jmapro.2021.08.045

Saha, S., Deb, S., & Bandyopadhyay, P. P. (2021). Progressive wear based tool failure analysis during dry and MQL assisted sustainable micro-milling. International Journal of Mechanical Sciences, 212, 106844. https://doi.org/10.1016/j.ijmecsci.2021.106844

Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1-18. https://doi.org/10.1016/j.jclepro.2016.03.146

Shatla, M., Kerk, C., & Altan, T. (2001). Process modeling in machining. Part II: Validation and applications of the determined flow stress data. International Journal of Machine Tools and Manufacture, 41(11), 1659-1680. https://doi.org/10.1016/S0890-6955(01)00017-7

Shi, Q., Li, L., He, N., Zhao, W., & Liu, X. (2013). Experimental study in high speed milling of titanium alloy TC21. The International Journal of Advanced Manufacturing Technology, 64(1), 49-54. https://doi.org/10.1007/s00170-012-3997-3

Sur, G., Motorcu, A. R., & Nohutçu, S. (2022). Single and multi-objective optimization for cutting force and surface roughness in peripheral milling of Ti6Al4V using fixed and variable helix angle tools. Journal of Manufacturing Processes, 80, 529-545. https://doi.org/10.1016/j.jmapro.2022.06.016

Talib, N., & Rahim, E. A. (2018). Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining. Tribology International, 118, 89-104. https://doi.org/10.1016/j.triboint.2017.09.016

Tamang, S. K., Teyi, N., & Tsumkhapa, R. T. (2020). Numerical Simulation of Cutting Force in High Speed Machining of Inconel 718. Key Engineering Materials, 856, 43-49. Research, Invention and Innovation Congress. https://doi.org/10.4028/www.scientific.net/KEM.856.43

Thi-Hoa, P., Thi-Bich, M., Van-Canh, T., Tien-Long, B., & Duc-Toan, N. (2018). A study on the cutting force and chip shrinkage coefficient in high-speed milling of A6061 aluminum alloy. The International Journal of Advanced Manufacturing Technology, 98(1), 177-188. https://doi.org/10.1007/s00170-017-1063-x

Yadav, R. K., Abhishek, K., & Mahapatra, S. S. (2015). A simulation approach for estimating flank wear and material removal rate in turning of Inconel 718. Simulation Modelling Practice and Theory, 52, 1-14. https://doi.org/10.1016/j.simpat.2014.12.004

Downloads

Published

2024-11-16

How to Cite

MAHMAT, A. (2024). Sonlu Elemanlar Yöntemi Kullanılarak Ti-6Al-4V’nin Yüksek Hızlı Mikro Frezelenmesinde Kesme Kuvvetlerinin İncelenmesi. International Journal of Advanced Natural Sciences and Engineering Researches, 8(10), 196–203. https://doi.org/10.5281/zenodo.14188731

Issue

Section

Articles