Arayüz şartları ile verilen iki-aralıklı Sturm-Liouville Problemi
Abstract views: 2 / PDF downloads: 2
Keywords:
Sturm-Liouville Problemi, Periyodik Sınır Şartı, Arayüz ŞartıAbstract
Downloads
References
P. Binding and V. Hans, “A Prfer angle approach to the periodic Sturm-Liouville problem”, The American Mathematical Monthly 119.6 (2012): 477-484.
İ. Çelik, G. Gokmen, “Approximate solution of periodic Sturm-Liouville problems with Chebyshev collocation method”, Applied mathematics and computation 170.1 (2005): 285-295.
M. S. P. Eastham, "The spectral theory of periodic differential equations." (No Title) (1973).
X. Haoa, L. Liu, Y. Wu,“Existence and multiplicity results for nonlinear periodic boundary value problems”, Nonlinear Analysis: Theory, Methods and Applications, 2010, 72.9-10: 3635-3642.
N. R. Kent, B. S. Edward, and D. S. Arthur. "Fundamentals of Differential Equations and boundary value problems." (2012).
K. V., Khmelnytskaya, H. C. Rosu and A. Gonzlez. “Periodic Sturm-Liouville problems related to two Riccati equations of constant coefficients”, Annals of Physics 325.3 (2010): 596-606.
E. Kreyszig, Introductory functional analysis with applications. Vol. 17. John Wiley & Sons, 1991.
A. N. Kolmogorov, and S. V. Fomin. Introductory real analysis. Courier Corporation, 1975.
O. Mukhtarov, K. Aydemir, "Two‐linked periodic Sturm–Liouville problems with transmission conditions." Mathematical Methods in the Applied Sciences 44.18 (2021): 14664-14676.
O. Mukhtarov, H. Olğar, and K. Aydemir, "Eigenvalue problems with interface conditions." Konuralp Journal of Mathematics 8.2 (2020): 284-286.
H. Olğar, et al., "The weak eigenfunctions of boundary-value problem with symmetric discontinuities." Journal of Applied Analysis 28.2 (2022): 275-283.
S. N. Öztürk, O. Mukhtarov, K.Aydemir. "Non-classical periodic boundary value problems with impulsive conditions." Journal of New Results in Science 12.1 (2023): 1-8.
K.T. Tang, Mathematical methods for engineers and scientists. Vol. 1. New York: Springer, 2007.
A. A. Shkalikov, A. A., and Oktay A. Veliev, “On the Riesz basis property of the eigen-and associated functions of periodic and antiperiodic Sturm-Liouville problems”, Mathematical Notes 85.5-6 (2009): 647-660.
G. Vanden Berghe, M. Van Daele, H. De Meyer, “A modified difference scheme for periodic and semiperiodic Sturm-Liouville problems”, Applied numerical mathematics 18.1-3 (1995): 69-78