Lityum-iyon Pillerin Aşırı Şarj ve Aşırı Deşarja Maruz Kalması Durumunda Empedans Tepkisinin Eşdeğer Devre Modellemesi
Abstract views: 29 / PDF downloads: 19
Keywords:
Elektrokimyasal Empedans Spektroskopisi, Li-İyon Pili, Aşırı Şarj, Aşırı Deşarj, Eşdeğer Devre ModellemesiAbstract
Bu çalışma, ticari madeni tip lityum-iyon pillerin aşırı şarj ve aşırı deşarj koşullarında eşdeğer devre
modellemesi kullanılarak empedans spektroskopisi tepkisini araştırmaktadır. Pil hücreleri üzerinde yapılan
elektrokimyasal empedans testlerinde, aşırı şarj ve aşırı deşarj durumlarındaki değişimler empedans
spektroskopisi ile takip edilmiştir. Empedans verileri, normal çalışma sırasında belirgin kalıplar sergilemiş
ve bu durum anormal difüzyon empedans modelinin uygulanmasını gerektirmiştir. Model parametrelerinin
regresyon analizi, hücrelerin aşırı şarj ve aşırı deşarj öncesi ve sonrası elektrokimyasal performansına dair
değerli bilgiler sunmuştur.
Downloads
References
Qian, Kun, et al. Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge. RSC Advances, 2016, 6.80: 76897-76904.
Ye, Jiana, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Applied Energy, 2016, 182: 464-474.
Ouyang, Dongxu, et al. Investigation into the fire hazards of lithium-ion batteries under overcharging. Applied Sciences, 2017, 7.12: 1314.
Jiang, Lihua, et al. Overcharge behavior and early warning analysis of LiNi0.5Co0.2Mn0. 3O2/C lithium-ion battery with high capacity. Journal of The Electrochemical Society, 2019, 166.6: A1055.
Guo, Rui, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Scientific Reports, 2016, 6.1: 30248.
Guo, Zixin, et al. Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries. Journal of Energy Chemistry, 2023, 78: 497-506.
Buteau, Sam; Dahn, D. C.; Dahn, J. R. Explicit conversion between different equivalent circuit models for electrochemical impedance analysis of lithium-ion cells. Journal of The Electrochemical Society, 2018, 165.2: A228.
Erol, Salim. Process model development of lithium-ion batteries—an electrochemical impedance spectroscopy simulation. Sakarya University Journal of Science, 2020, 24.6: 1191-1197.
Barzacchi, Leonardo, et al. Enabling early detection of lithium-ion battery degradation by linking electrochemical properties to equivalent circuit model parameters. Journal of Energy Storage, 2022, 50: 104213.
Chang, Chun, et al. An improvement of equivalent circuit model for state of health estimation of lithium-ion batteries based on mid-frequency and low-frequency electrochemical impedance spectroscopy. Measurement, 2022, 202: 111795.
Erol, Salim. A statistical design approach on electrochemical impedance spectroscopy of NMC Li-ion battery. Journal of the Electrochemical Society, 2022, 169.10: 100503.
Erol, Salim. Equivalent Circuit Model for Electrochemical Impedance Spectroscopy of Commercial 18650 Lithium‐Ion Cell Under Over‐Discharge and Overcharge Conditions. Electroanalysis, 2024, 36.10: e202300232.
Bisquert, Juan; Compte, Albert. Theory of the electrochemical impedance of anomalous diffusion. Journal of Electroanalytical Chemistry, 2001, 499.1: 112-120.
Žic, Mark, et al. Extraction of distribution function of relaxation times by using Levenberg-Marquardt algorithm: A new approach to apply a discretization error free Jacobian matrix. Journal of The Electrochemical Society, 2022, 169.3: 030508.
Westerhoff, Uwe, et al. Analysis of lithium‐ion battery models based on electrochemical impedance spectroscopy. Energy Technology, 2016, 4.12: 1620-1630.