Potansiyel Olarak Akıllı Malzemeler
Abstract views: 0 / PDF downloads: 1
Keywords:
Yarı iletken malzemeler, Nanomalzemeler, Biyomalzemeler, Fotonik KristallerAbstract
Akıllı malzemeler, çevresel koşullara duyarlı, geri dönüşümlü değişim gösterebilen ve belirli bir
işlevi yerine getirebilen malzemelerdir. Bu özellikler, onları geleneksel malzemelere göre çok daha
avantajlı hale getirir. Ancak, bir malzemenin akıllı malzeme olarak kabul edilip edilmeyeceği, kullanım
alanına ve istenen özelliğe bağlıdır. Örneğin, bir inşaat malzemesi için dayanıklılık ve uzun ömür
önemliyken, bir tıbbi implant için biyouyumluluk ve şekil hafızası gibi özellikler daha ön plana çıkar.
Buna göre alttaki maddelerden ilk yedi maddesi her halükarda akıllı malzeme özelliği göstermekteyken,
diğerleri potansiyel olarak akıllı malzeme özelliklerine sahiptir. Uygulandıkları yere göre tasarlayıcı
tarafından bu özelliklerini kullanmaları sağlanabilir ya da henüz akıllı davranış özelikleri tam anlamıyla
ortaya çıkarılmamış olabilir. Akıllı malzemeler, sürekli gelişen bir alan olup yeni malzemeler ve
uygulamalar her geçen gün ortaya çıkmaktadır.
Downloads
References
F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, ‘Semiconductor quantum dots: Technological progress and future challenges’, Science, vol. 373, no. 6555, p. eaaz8541, Aug. 2021, doi: 10.1126/science.aaz8541.
Y.-J. Mii, ‘Semiconductor Innovations, from Device to System’, in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Jun. 2022, pp. 276–281. doi: 10.1109/VLSITechnologyandCir46769.2022.9830423.
W. Hu et al., ‘Ambipolar 2D Semiconductors and Emerging Device Applications’, Small Methods, vol. 5, no. 1, p. 2000837, 2021, doi: 10.1002/smtd.202000837.
T. Kim et al., ‘Progress, Challenges, and Opportunities in Oxide Semiconductor Devices: A Key Building Block for Applications Ranging from Display Backplanes to 3D Integrated Semiconductor Chips’, Advanced Materials, vol. 35, no. 43, p. 2204663, 2023, doi: 10.1002/adma.202204663.
W. Huang, M. Wang, L. Hu, C. Wang, Z. Xie, and H. Zhang, ‘Recent Advances in Semiconducting Monoelemental Selenium Nanostructures for Device Applications’, Advanced Functional Materials, vol. 30, no. 42, p. 2003301, 2020, doi: 10.1002/adfm.202003301.
M. Shrivastava and V. Ramgopal Rao, ‘A Roadmap for Disruptive Applications and Heterogeneous Integration Using Two-Dimensional Materials: State-of-the-Art and Technological Challenges’, Nano Lett., vol. 21, no. 15, pp. 6359–6381, Aug. 2021, doi: 10.1021/acs.nanolett.1c00729.
S. B. Mitta et al., ‘Electrical characterization of 2D materials-based field-effect transistors’, 2D Mater., vol. 8, no. 1, p. 012002, Nov. 2020, doi: 10.1088/2053-1583/abc187.
C. Yao and Y. Ma, ‘Superconducting materials: Challenges and opportunities for large-scale applications’, iScience, vol. 24, no. 6, p. 102541, Jun. 2021, doi: 10.1016/j.isci.2021.102541.
K. Ilieva and O. Dinolov, ‘State-of-the-art of superconducting materials and their energy-efficiency applications’, in 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Nov. 2020, pp. 1–5. doi: 10.1109/EEAE49144.2020.9279004.
J. Shimoyama and T. Motoki, ‘Current Status of High Temperature Superconducting Materials and their Various Applications’, IEEJ Transactions on Electrical and Electronic Engineering, vol. 19, no. 3, pp. 292–304, 2024, doi: 10.1002/tee.23976.
X. Gui, B. Lv, and W. Xie, ‘Chemistry in Superconductors’, Chem. Rev., vol. 121, no. 5, pp. 2966–2991, Mar. 2021, doi: 10.1021/acs.chemrev.0c00934.
M. Yazdani-Asrami, S. Seyyedbarzegar, A. Sadeghi, W. T. B. de Sousa, and D. Kottonau, ‘High temperature superconducting cables and their performance against short circuit faults: current development, challenges, solutions, and future trends’, Supercond. Sci. Technol., vol. 35, no. 8, p. 083002, Jul. 2022, doi: 10.1088/1361-6668/ac7ae2.
L. Boeri et al., ‘The 2021 room-temperature superconductivity roadmap’, J. Phys.: Condens. Matter, vol. 34, no. 18, p. 183002, Mar. 2022, doi: 10.1088/1361-648X/ac2864.
S. Thangudu, ‘Next Generation Nanomaterials: Smart Nanomaterials, Significance, and Biomedical Applications’, in Applications of Nanomaterials in Human Health, F. A. Khan, Ed., Singapore: Springer, 2020, pp. 287–312. doi: 10.1007/978-981-15-4802-4_15.
G. Speranza, ‘Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications’, Nanomaterials, vol. 11, no. 4, Art. no. 4, Apr. 2021, doi: 10.3390/nano11040967.
Paras et al., ‘A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications’, Nanomaterials, vol. 13, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/nano13010160.
M. A. Subhan, K. P. Choudhury, and N. Neogi, ‘Advances with Molecular Nanomaterials in Industrial Manufacturing Applications’, Nanomanufacturing, vol. 1, no. 2, Art. no. 2, Sep. 2021, doi: 10.3390/nanomanufacturing1020008.
X. Zheng, P. Zhang, Z. Fu, S. Meng, L. Dai, and H. Yang, ‘Applications of nanomaterials in tissue engineering’, RSC Adv., vol. 11, no. 31, pp. 19041–19058, May 2021, doi: 10.1039/D1RA01849C.
S. A. Mazari et al., ‘Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review’, Journal of Environmental Chemical Engineering, vol. 9, no. 2, p. 105028, Apr. 2021, doi: 10.1016/j.jece.2021.105028.
A. K. Bastola, M. Paudel, L. Li, and W. Li, ‘Recent progress of magnetorheological elastomers: a review’, Smart Mater. Struct., vol. 29, no. 12, p. 123002, Nov. 2020, doi: 10.1088/1361-665X/abbc77.
S. S. Kang, K. Choi, J.-D. Nam, and H. J. Choi, ‘Magnetorheological Elastomers: Fabrication, Characteristics, and Applications’, Materials, vol. 13, no. 20, Art. no. 20, Jan. 2020, doi: 10.3390/ma13204597.
Y. Kim and X. Zhao, ‘Magnetic Soft Materials and Robots’, Chem. Rev., vol. 122, no. 5, pp. 5317–5364, Mar. 2022, doi: 10.1021/acs.chemrev.1c00481.
M. Keshavarzian, M. M. Najafizadeh, K. Khorshidi, P. Yousefi, and S. M. Alavi, ‘Comparison of the application of smart electrorheological and magnetorheological fluid cores to damp sandwich panels’ vibration behavior, based on a novel higher-order shear deformation theory’, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 236, no. 2, pp. 225–244, Apr. 2022, doi: 10.1177/09544089211037803.
M. Vinyas, ‘Computational Analysis of Smart Magneto-Electro-Elastic Materials and Structures: Review and Classification’, Arch Computat Methods Eng, vol. 28, no. 3, pp. 1205–1248, May 2021, doi: 10.1007/s11831-020-09406-4.
U. Biswas, C. Nayak, and J. K. Rakshit, ‘Fabrication techniques and applications of two-dimensional photonic crystal: history and the present status’, OE, vol. 62, no. 1, p. 010901, Dec. 2022, doi: 10.1117/1.OE.62.1.010901.
G.-J. Tang, X.-T. He, F.-L. Shi, J.-W. Liu, X.-D. Chen, and J.-W. Dong, ‘Topological Photonic Crystals: Physics, Designs, and Applications’, Laser & Photonics Reviews, vol. 16, no. 4, p. 2100300, 2022, doi: 10.1002/lpor.202100300.
J. Wang, P. W. H. Pinkse, L. I. Segerink, and J. C. T. Eijkel, ‘Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing’, ACS Nano, vol. 15, no. 6, pp. 9299–9327, Jun. 2021, doi: 10.1021/acsnano.1c02495.
K. B. Kumar, A. Rajitha, A. K. Rao, K. Alam, A. Albawi, and G. Sethi, ‘SMART Materials for Biomedical Applications: Advancements and Challenges’, E3S Web Conf., vol. 430, p. 01133, 2023, doi: 10.1051/e3sconf/202343001133.
W. Park, H. Shin, B. Choi, W.-K. Rhim, K. Na, and D. Keun Han, ‘Advanced hybrid nanomaterials for biomedical applications’, Progress in Materials Science, vol. 114, p. 100686, Oct. 2020, doi: 10.1016/j.pmatsci.2020.100686.
C. Kalirajan, A. Dukle, A. J. Nathanael, T.-H. Oh, and G. Manivasagam, ‘A Critical Review on Polymeric Biomaterials for Biomedical Applications’, Polymers, vol. 13, no. 17, Art. no. 17, Jan. 2021, doi: 10.3390/polym13173015.
C. Montoya, Y. Du, A. L. Gianforcaro, S. Orrego, M. Yang, and P. I. Lelkes, ‘On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook’, Bone Res, vol. 9, no. 1, pp. 1–16, Feb. 2021, doi: 10.1038/s41413-020-00131-z.