Derin Öğrenme ile Beyin MRI Görüntülerinde Süper Çözünürlük: SRCNN, SRGAN ve ESRGAN Yaklaşımları
Abstract views: 46 / PDF downloads: 10
Keywords:
Süper Çözünürlük, Beyin MRI Görüntüleri, SRCNN, SRGAN, ESRGAN, Derin Öğrenme, Tıbbi GörüntülemeAbstract
Tıbbi görüntüleme teknolojileri, hastalıkların doğru teşhis ve tedavisinde hayati bir öneme sahiptir.
Beyin MRI görüntüleri, nörolojik hastalıkların tanı ve takibinde detaylı anatomik bilgi sunar. Ancak,
teknik sınırlamalar ve donanım kapasiteleri nedeniyle elde edilen MRI görüntüleri çoğu zaman düşük
çözünürlüklü olmaktadır. Bu çalışmanın amacı, düşük çözünürlüklü beyin MRI görüntülerini iyileştirmek
için SRCNN (Super-Resolution Convolutional Neural Network), SRGAN (Super-Resolution Generative
Adversarial Network) ve ESRGAN (Enhanced Super-Resolution Generative Adversarial Network)
yöntemlerinin uygulanması ve karşılaştırılmasıdır. Modellerin performansları, görsel kalite, yapısal
benzerlik indeksi (SSIM) ve tepe sinyal-gürültü oranı (PSNR) gibi ölçütlerle değerlendirilmiştir. Elde
edilen bulgular, ESRGAN modelinin daha keskin detaylar ve daha gerçekçi görüntüler ürettiğini ortaya
koymaktadır. Bu çalışma, derin öğrenme tabanlı süper çözünürlük tekniklerinin tıbbi görüntülemede
sunduğu yenilikçi olanaklara dikkat çekmektedir.
Downloads
References
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual Dense Network for Image Super-Resolution,” 2018 IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 2472–2481, Dec. 2018, doi: 10.1109/CVPR.2018.00262.
X. Wang et al., “ESRGAN: Enhanced super-resolution generative adversarial networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11133 LNCS, pp. 63–79, 2019, doi: 10.1007/978-3-030-11021-5_5/FIGURES/10.
C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep Convolutional Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295–307, Feb. 2016, doi: 10.1109/TPAMI.2015.2439281.
C. Ledig et al., “Photo-realistic single image super-resolution using a generative adversarial network,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 105–114, 2017, doi: 10.1109/CVPR.2017.19.
C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural network,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9906 LNCS, pp. 391–407, 2016, doi: 10.1007/978-3-319-46475-6_25/FIGURES/7.
J. Liu, F. Chen, X. Wang, and H. Liao, “An Edge Enhanced SRGAN for MRI Super Resolution in Slice-Selection Direction,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11846 LNCS, pp. 12–20, 2019, doi: 10.1007/978-3-030-33226-6_2.
N. M. H. Elsaid and Y. C. Wu, “Super-Resolution Diffusion Tensor Imaging using SRCNN: A Feasibility Study,” Conf. Proc. ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2019, p. 2830, Jul. 2019, doi: 10.1109/EMBC.2019.8857125.
K. Thurnhofer-Hemsi, E. López-Rubio, E. Domínguez, R. M. Luque-Baena, and N. Roé-Vellvé, “Deep learning-based super-resolution of 3D magnetic resonance images by regularly spaced shifting,” Neurocomputing, vol. 398, pp. 314–327, Jul. 2020, doi: 10.1016/J.NEUCOM.2019.05.107.
I. Sanchez and V. Vilaplana, “Brain MRI super-resolution using 3D generative adversarial networks,” no. Midl, pp. 1–8, 2018, [Online]. Available: http://arxiv.org/abs/1812.11440
C. Tan, J. Zhu, and P. Lio’, “Arbitrary scale super-resolution for brain MRI images,” IFIP Adv. Inf. Commun. Technol., vol. 583 IFIP, pp. 165–176, 2020, doi: 10.1007/978-3-030-49161-1_15.
B. Ankitha, C. Srikanth, D. Venkatesh, D. Badrinath, G. Aditya, and S. Akila Agnes, “Enhancing the resolution of Brain MRI images using Generative Adversarial Networks (GANs),” Proc. Int. Conf. Comput. Intell. Sustain. Eng. Solut. CISES 2023, pp. 19–25, 2023, doi: 10.1109/CISES58720.2023.10183400.
X. Jiang, Y. Xu, P. Wei, and Z. Zhou, “CT image super resolution based on improved SRGAN,” 2020 5th Int. Conf. Comput. Commun. Syst. ICCCS 2020, pp. 363–367, 2020, doi: 10.1109/ICCCS49078.2020.9118497.
G. Bharathi Mohan et al., “Enhancing Brain Tumor Diagnosis with Generative Adversarial Networks,” Proc. 14th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2024, no. January, pp. 846–851, 2024, doi: 10.1109/Confluence60223.2024.10463384.
B. H. Menze et al., “The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS),” IEEE Trans. Med. Imaging, vol. 34, no. 10, pp. 1993–2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.
C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a Deep Convolutional Network for Image Super-Resolution,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8692 LNCS, no. PART 4, pp. 184–199, 2014, doi: 10.1007/978-3-319-10593-2_13.
P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 5967–5976, Nov. 2017, doi: 10.1109/CVPR.2017.632.
S. M. A. Bashir, Y. Wang, M. Khan, and Y. Niu, “A comprehensive review of deep learningbased single image super-resolution,” PeerJ Comput. Sci., vol. 7, pp. 1–56, 2021, doi: 10.7717/PEERJ-CS.621/SUPP-3.