DEVE SÜTÜNÜN BESİNİ İÇERİĞİ ve İNSAN SAĞLIĞINA ETKİLERİ


Abstract views: 3 / PDF downloads: 1

Authors

  • Göktuğ Egemen GEZER Namık Kemal Üniversitesi
  • Seydi YIKMIŞ Namık Kemal Üniversitesi

Keywords:

Deve Sütü, Hipoalerjenik, Laktoz İntoleransı, Antimikrobiyal, Antioksidan, Bağışıklık Destekleyici, Antidiyabetik

Abstract

Deve sütü, özellikle Ortadoğu ve Arap toprakları olmak üzere günlük yaşamda develerin sıklıkla
kullanıldığı toplumlarda tüketimi yüksek olan önemli bir besindir. Bu çalışmada deve sütü ile ilgili besin
içeriği ve insan sağlığına etkileri üzerine yapılan güncel araştırmalar derlenmiştir. Deve sütünün besin
içeriği diğer sütler gibi dengeli ve besleyici olmakla birlikte içerdiği lizozim, laktoferrin,
immünoglobülinler sayesinde bağışıklık destekleyici, antimikrobiyal ve antioksidan özellikler
göstermektedir. Bileşimindeki α-laktalbümin ve laktoferrin oranının yüksek olması ve β-laktoglobulin
bulunmaması, insanlar tarafından kolay sindirilmesini ve hipoalerjenik özellik göstermesini
sağlamaktadır. İçerdiği yüksek oranda doymamış yağ asidi ve uzun zincirli yağ asidi bileşiminden dolayı
kan lipid seviyelerinin düşürülmesinde etkili olabileceği bilinmektedir. Bileşimindeki düşük kazomorfin
konsantresiyle birlikte laktozun uzun süre laktaz etkisine maruz kalmasını sağlamakta ve sindirimini
kolaylaştırmaktadır. Peptit içeriğindeki peynir altı suyu proteinlerinin sindirimiyle ortaya çıkan
bileşiklerin antidiyabetik ve hipoglisemik aktivitelere sebep olduğu düşünülmektedir.

Downloads

Download data is not yet available.

Author Biographies

Göktuğ Egemen GEZER, Namık Kemal Üniversitesi

Beslenme ve Diyetetik, Sağlık Bilimleri Fakültesi

Seydi YIKMIŞ, Namık Kemal Üniversitesi

Beslenme ve Diyetetik, Sağlık Bilimleri Fakültesi

References

El-Agamy, E.I., Ruppanner, R., Ismail, A., Champagne,

C.P., Assaf, R., 1992. Antibacterial and antiviral

activity of camel’s milk protective proteins. J. Dairy

Res. 59, 169–175.

Kaskous, S., 2016. Importance of camel’s milk for

human health. Emir. J. Food Agric. (EJFA) 28, 158

Suliman, G.M., Alowaimer, A.N., Hussein, E.O.S., Ali,

H.S., Abdelnour, S.A., Abd ElHack, M.E., Swelum,

A.A., 2019. Chemical composition and quality

characteristics of meat in three one-humped camel

(Camelus dromedarius) breeds as affected by muscle

type and post-mortem storage period. Animals 9,834.

Swelum, A.A., Saadeldin, I.M., Abdelnour, S.A., Ba

Awadh, H., Abd El-Hack, M.E., Sheiha, A.M., 2020.

Relationship between concentrations of macro and trace

elements in serum and follicular, oviductal, and uterine

fluids of the dromedary camel (Camelus dromedarius).

Trop. Anim. Health Prod. 52, 1315–1324.

Sikkema, R.S., Farag, E.A.B.A., Islam, M., Atta, M.,

Reusken, C.B.E.M., Al-Hajri, M.M., Koopmans,

M.P.G., 2019. Global status of Middle East respiratory

syndrome coronavirus in dromedary camels: a

systematic review. Epidemiol. Infect. 147, e84.

Park, Y.W., Haenlein, G.F.W., 2013. Milk and Dairy

Products in Human Nutrition. John Wiley & Sons,

Chichester, West Sussex, UK.

El-Hatmi, H., Jrad, Z., Salhi, I., Aguibi, A., Nadri, A.,

Khorchani, T., 2015. Comparison of composition and

whey protein fractions of human, camel, donkey, goat

and cow’s milk. Mljekarstvo/Dairy 65, 159–167.

Food and Agriculture Organization of the United

Nations (FAO), 2012. Gateway to dairy production and

products. Retrieved November 23, 2017.

Bai, Y.H., Zhao, D.B., 2015. The acid–base buffering

properties of Alxa bactrian camel’s milk. Small Rumin.

Res. 123, 287–292.

10. El-Agamy, E. I., Nawar, M., Shamsia, S. M., Awad,

S., & Haenlein, G. F. W. 2009. Are camel milk proteins

convenient to the nutrition of cow milk allergic

children? Small Ruminant Research, 82(1), 1–6.

Kappeler, S. R., Farah, Z., & Puhan, Z. 2003. 5’

Flanking regions of camel milk genes are highly similar

to homologue regions of other species and can be

divided into two distinct groups. Journal of Dairy

Science, 86(2), 498–508.

Devendra, K., Verma, K.A., Chatli, M.K., Singh, R.,

Kumar, P., Mehta, N., Malav, O.P., 2016. Camel’s milk:

alternative milk for human consumption and its health

benefits. Nutr. Food Sci. 46, 217–227.

Ereifej, K. I., Alu’datt, M. H., Alkhalidy, H. A., Alli, I.,

& Rababah, T. 2011. Comparison and characterisation

of fat and protein composition for camel milk from

eight Jordanian locations. Food Chemistry, 127(1), 282

Mati, A., Senoussi-Ghezali, C., Si Ahmed Zennia, S.,

Almi-Sebbane, D., El-Hatmi, H., & Girardet, J.-M.

Dromedary camel milk proteins, a source of

peptides having biological activities – A review.

International Dairy Journal, 73, 25-37.

Attia, H., Kherouatou, N., Dhouib, A., 2001.

Dromedary

milk

lactic

acid

fermentation:

microbiological and rheological characteristics. J. Ind.

Microbiol. Biotechnol. 26, 263–270.

Omar, A., Harbourne, N., & Oruna-Concha, M. J. 2016.

Quantification of major camel milk proteins by capillary

electrophoresis. International Dairy Journal, 58, 31–35.

Hinz, K., Connor, P. M., Huppertz, T., Ross, R. P., &

Kelly, A. L. 2012. Comparison of the principal proteins

in bovine, caprine, buffalo, equine and camel milk.

Journal of Dairy Research, 79(2), 185–191.

El-Agamy, E. I. 2007. The challenge of cow milk

protein allergy. Small Ruminant Research, 68(1), 64

Dreiucker, J., & Vetter, W. 2011. Fatty acids patterns in

camel, moose, cow and human milk as determined with

GC/MS after silver ion solid phase extraction. Food

Chemistry, 126(2), 762–771.

Izadi, A., Khedmat, L., Mojtahedi, S.Y., 2019.

Nutritional and therapeutic perspectives of camel’s milk

and its protein hydrolysates: a review on versatile

biofunctional properties. J. Funct. Foods. 60, 103441.

Tomotake, H., Okuyama, R., Katagiri, M., Fuzita, M.,

Yamato, M., & Ota, F. 2006. Comparison between

Holstein cow’s milk and Japanese-Saanen goat’s milk in

fatty acid composition, lipid digestibility and protein

profile. Bioscience, Biotechnology, and Biochemistry,

(11), 2771–2774.

Chandan, R.C., Kilara, A., 2010. Dairy Ingredients for

Food Processing. Wiley.

Cardoso, R. R. A., Santos, R. M. D. B., Cardoso, C. R.

A., & Carvalho, M. O. 2010. Consumption of camel’s

milk by patients intolerant to lactose. A preliminary

study. Revista Alergia Mexico, 57, 26–32.

Konuspayeva, G., Baubekova, A., Akhmetsadykova, S.,

Akhmetasdykov, N., & Faye, B. 2019. Concentrations

in D-and L-lactate in raw cow and camel milk. Journal

of Camel Practice and Research, 26(1), 111–113.

Kappeler, S. R. 1998. Compositional and structural

analysisof camel milk proteins with emphasis on

protective proteins. ETH, Zurich, Switzerland: Swiss

Federal Institute of Technology. Ph.D. Thesis.

Ziane, M., Couvert, O., Le Chevalier, P., Moussa

Boudjemaa, B., & Leguerinel, I. 2016. Identification

and characterization of aerobic spore forming bacteria

isolated from commercial camel’s milk in south of

Algeria. Small Ruminant Research, 137, 59–64.

Faye, B., Konuspayeva, G., & Bengoumi, M. 2019.

Vitamins of camel milk: A comprehensive review.

Journal of Camelid Science, 12, 17–32.

Ayoub, M.A., Palakkott, A.R., Ashraf, A., Iratni, R.,

The molecular basis of the antidiabetic properties

of Camel’s milk. Diabetes. Res. Clin. Pract. 146, 305–

Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E.,

Qattan, S.Y., Batiha, G.E., Khafaga, A. F., Alagawany,

M., 2020a. Probiotics in poultry feed: a comprehensive

review. J. Anim. Physiol. Anim. Nutr. 104, 1835–1850.

Ashour, E.A., Abd El-Hack, M.E., Shafi, M.E.,

Alghamdi, W.Y., Taha, A.E., Swelum, A.A., El

Saadony, M.T., 2020. Impacts of green coffee powder

supplementation on growth performance, carcass

characteristics, blood indices, meat quality and gut

microbial load in broilers. Agriculture 10, 457.

Al-Saleh, A.A., Metwalli, A.A., Ismail, E.A., Alhaj,

O.A., 2014. Antioxidative activity of camel’s milk

casein hydrolysates. J. Camel Pract. Res. 21 (2), 229

Jrad, Z., Girardet, J.M., Adt, I., Oulahal, N., Degraeve,

P., Khorchani, T., El Hatmi, H., 2014a. Antioxidant

activity of camel’s milk casein before and after in vitro

simulated enzymatic digestion. Mljekarstvo 64, 287

Benkerroum, N., Mekkaoui, M., Bennani, N., & Hidane,

K. 2004. Antimicrobial activity of camel’s milk against

pathogenic strains of Escherichia coli and Listeria

monocytogenes. International Journal of Dairy

Technology, 57(1), 39–43.

Salami, M., Moosavi-Movahedi, A., Ehsani, M.,

Yousefi, R., Haertl´e, T., Jean-Marc Chobert, J. M., …

Niasari-Naslaji,

A. 2010. Improvement of the

antimicrobial and antioxidant activities of camel and

bovine whey proteins by limited proteolysis. Journal of

Agricultural and Food Chemistry, 58(6), 3297–3302.

Othman, A. 2016. Detection of bactericidal activity of

camel’s milk compared with raw and processed cow’s

milk

against

pathogenic

bacteria.

Pharmaceutical Journal, 15(1), 31–37.

Egyptian

Kumar, D., Chatli, M.K., Singh, R., Mehta, N., Kumar,

P., 2016b. Antioxidant and antimicrobial activity of

camel’s milk casein hydrolysates and its fractions.

Small Rumin. Res. 139, 20–25.

Wang, Z., Zhang, W., Wang, B., Zhang, F., Shao, Y.,

Influence of Bactrian camel’s milk on the gut

microbiota. J. Dairy Sci. 101, 5758–5769.

Mal, G., Dande, S. S., Jain, V. K., & Sahani, M. S.

Therapeutic value of camel milk as a nutritional

supplement for multiple drug resistant (MDR)

tuberculosis patients. Israel Journal of Veterinary

Medicine, 61, 88–91.

Shabo, Y., Barzel, R., & Yagil, R. 2008. Etiology of

Crohn’s disease and camel milk treatment. Journal of

Camel Practice and Research, 15(1), 55–59.

Redwan, E., & Tabll, A. 2007. Camel lactoferrin

markedly inhibits hepatitis c virus genotype 4 infection

of human peripheral blood leukocytes. Journal of

Immunoassay and Immunochemistry, 28(3), 267–277.

Mohamad, R. H., Zekry, Z. K., Al-Mehdar, H. A.,

Salama, O., El-Shaieb, S. E., ElBasmy, A. A., …

Sharawy, S. M. 2009. Camel milk as an adjuvant

therapy for the treatment of type 1 diabetes: Verification

of a traditional ethnomedical practice. Journal of

Medicinal Food, 12(2), 461–465.

Agrawal, R. P., Saran, S., Sharma, P., Gupta, R. P.,

Kochar, D. K., & Sahani, M. S. 2007. Effect of camel

milk on residual β-cell function in recent onset type 1

diabetes. Diabetes Research and Clinical Practice,

(3), 494–495.

Agrawal, R. P., Jain, S., Shah, S., Chopra, A., &

Agarwal, V. 2011. Effect of camel milk on glycemic

control and insulin requirement in patients with type 1

diabetes: 2-years randomized controlled trial. European

Journal of Clinical Nutrition, 65(9), 1048.

Ejtahed, H. S., Niasari Naslaji, A., Mirmiran, P., Zraif

Yeganeh, M., Hedayati, M., Azizi, F., & Moosavi

Movahedi, A. 2015. Effect of camel milk on blood

sugar and lipid profile of patients with type 2 diabetes:

A pilot clinical trial. International Journal of

Endocrinology and Metabolism, 13(1), 1–6.

Korish, A. A., Abdel Gader, A. G., Korashy, H. M., Al

Drees, A. M., Alhaider, A. A., & Arafah, M. M. 2015.

Camel

milk attenuates the biochemical and

morphological features of diabetic nephropathy:

Inhibition of Smad1 and collagen type IV synthesis.

Chemico-Biological Interactions, 229, 100–108.

Malik, A., Al-Senaidy, A., Skrzypczak-Jankun, E., &

Jankun, J. 2012. A study of the anti-diabetic agents of

camel milk. International Journal of Molecular

Medicine, 30(3): 585–592.

Abou-Soliman, N. H., Awad, S., & Desouky, M. M.

Effect of digestive enzymes on the activity of

camel-milk insulin. International Journal of Dairy

Technology, 73(2), 341–344.

Nongonierma, A.B., Paolella, S., Mudgil, P., Maqsood,

S., FitzGerald, R.J., 2018. Identification of novel

dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in

camel’s milk protein hydrolysates. Food Chem. 244,

–348.

Nongonierma, A.B., Paolella, S., Mudgil, P., Maqsood,

S., FitzGerald, R.J., 2017. Dipeptidyl peptidase IV

(DPP-IV) inhibitory properties of camel’s milk protein

hydrolysates generated with trypsin. J. Funct. Foods 34,

–58. NPCS Board, 2012.

Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E.,

Zabermawi, N.M., Arif, M., Batiha, G. E., Al-Sagheer,

A.A., 2020b. Antimicrobial and antioxidant properties

of chitosan and its derivatives and their applications: a

review. Int. J. Biol. Macromol. 164, 2726–2744.

Damodharan, K., Palaniyandi, S.A., Yang, S.H., Suh,

J.W., 2016. Functional probiotic characterization and in

vivo cholesterol-lowering activity of Lactobacillus

helveticus isolated from fermented cow’s milk. J.

Microbiol. Biotechnol. 26, 1675–1686.

Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah,

N.P., Ayyash, M., 2017. Characterization of potential

probiotic lactic acid bacteria isolated from camel’s milk.

LWT-Food Sci Technol. 79, 316–325.

Phelan, M., Kerins, D., 2011. The potential role of milk

derived peptides in cardiovascular disease. Food Funct.

, 153–167.

Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F.,

Monnet, V., & Gobbetti, M. 2003. Angiotensin I

converting-enzyme-inhibitory and antibacterial peptides

from lactobacillus helveticus pr4 proteinase-hydrolyzed

caseins of milk from six species. Applied and

Environmental Microbiology, 69(9), 5297.

Soleymanzadeh, N., Mirdamadi, S., Mirzaei, M., &

Kianirad, M. 2019. Novel β-casein derived antioxidant

and ACE-inhibitory active peptide from camel milk

fermented

by Leuconostoc lactis PTCC1899:

Identification and molecular docking. International

Dairy Journal, 97, 201–208.

Tagliazucchi, D., Shamsia, S., & Conte, A. 2016.

Release of angiotensin converting enzyme-inhibitory

peptides during in vitro gastro-intestinal digestion of

camel milk. International Dairy Journal, 56, 119–128.

Downloads

Published

2025-01-13

How to Cite

GEZER, G. E., & YIKMIŞ, S. (2025). DEVE SÜTÜNÜN BESİNİ İÇERİĞİ ve İNSAN SAĞLIĞINA ETKİLERİ . International Journal of Advanced Natural Sciences and Engineering Researches, 7(11), 38–43. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/2379

Issue

Section

Articles