DEVE SÜTÜNÜN BESİNİ İÇERİĞİ ve İNSAN SAĞLIĞINA ETKİLERİ
Abstract views: 3 / PDF downloads: 1
Keywords:
Deve Sütü, Hipoalerjenik, Laktoz İntoleransı, Antimikrobiyal, Antioksidan, Bağışıklık Destekleyici, AntidiyabetikAbstract
Deve sütü, özellikle Ortadoğu ve Arap toprakları olmak üzere günlük yaşamda develerin sıklıkla
kullanıldığı toplumlarda tüketimi yüksek olan önemli bir besindir. Bu çalışmada deve sütü ile ilgili besin
içeriği ve insan sağlığına etkileri üzerine yapılan güncel araştırmalar derlenmiştir. Deve sütünün besin
içeriği diğer sütler gibi dengeli ve besleyici olmakla birlikte içerdiği lizozim, laktoferrin,
immünoglobülinler sayesinde bağışıklık destekleyici, antimikrobiyal ve antioksidan özellikler
göstermektedir. Bileşimindeki α-laktalbümin ve laktoferrin oranının yüksek olması ve β-laktoglobulin
bulunmaması, insanlar tarafından kolay sindirilmesini ve hipoalerjenik özellik göstermesini
sağlamaktadır. İçerdiği yüksek oranda doymamış yağ asidi ve uzun zincirli yağ asidi bileşiminden dolayı
kan lipid seviyelerinin düşürülmesinde etkili olabileceği bilinmektedir. Bileşimindeki düşük kazomorfin
konsantresiyle birlikte laktozun uzun süre laktaz etkisine maruz kalmasını sağlamakta ve sindirimini
kolaylaştırmaktadır. Peptit içeriğindeki peynir altı suyu proteinlerinin sindirimiyle ortaya çıkan
bileşiklerin antidiyabetik ve hipoglisemik aktivitelere sebep olduğu düşünülmektedir.
Downloads
References
El-Agamy, E.I., Ruppanner, R., Ismail, A., Champagne,
C.P., Assaf, R., 1992. Antibacterial and antiviral
activity of camel’s milk protective proteins. J. Dairy
Res. 59, 169–175.
Kaskous, S., 2016. Importance of camel’s milk for
human health. Emir. J. Food Agric. (EJFA) 28, 158
Suliman, G.M., Alowaimer, A.N., Hussein, E.O.S., Ali,
H.S., Abdelnour, S.A., Abd ElHack, M.E., Swelum,
A.A., 2019. Chemical composition and quality
characteristics of meat in three one-humped camel
(Camelus dromedarius) breeds as affected by muscle
type and post-mortem storage period. Animals 9,834.
Swelum, A.A., Saadeldin, I.M., Abdelnour, S.A., Ba
Awadh, H., Abd El-Hack, M.E., Sheiha, A.M., 2020.
Relationship between concentrations of macro and trace
elements in serum and follicular, oviductal, and uterine
fluids of the dromedary camel (Camelus dromedarius).
Trop. Anim. Health Prod. 52, 1315–1324.
Sikkema, R.S., Farag, E.A.B.A., Islam, M., Atta, M.,
Reusken, C.B.E.M., Al-Hajri, M.M., Koopmans,
M.P.G., 2019. Global status of Middle East respiratory
syndrome coronavirus in dromedary camels: a
systematic review. Epidemiol. Infect. 147, e84.
Park, Y.W., Haenlein, G.F.W., 2013. Milk and Dairy
Products in Human Nutrition. John Wiley & Sons,
Chichester, West Sussex, UK.
El-Hatmi, H., Jrad, Z., Salhi, I., Aguibi, A., Nadri, A.,
Khorchani, T., 2015. Comparison of composition and
whey protein fractions of human, camel, donkey, goat
and cow’s milk. Mljekarstvo/Dairy 65, 159–167.
Food and Agriculture Organization of the United
Nations (FAO), 2012. Gateway to dairy production and
products. Retrieved November 23, 2017.
Bai, Y.H., Zhao, D.B., 2015. The acid–base buffering
properties of Alxa bactrian camel’s milk. Small Rumin.
Res. 123, 287–292.
10. El-Agamy, E. I., Nawar, M., Shamsia, S. M., Awad,
S., & Haenlein, G. F. W. 2009. Are camel milk proteins
convenient to the nutrition of cow milk allergic
children? Small Ruminant Research, 82(1), 1–6.
Kappeler, S. R., Farah, Z., & Puhan, Z. 2003. 5’
Flanking regions of camel milk genes are highly similar
to homologue regions of other species and can be
divided into two distinct groups. Journal of Dairy
Science, 86(2), 498–508.
Devendra, K., Verma, K.A., Chatli, M.K., Singh, R.,
Kumar, P., Mehta, N., Malav, O.P., 2016. Camel’s milk:
alternative milk for human consumption and its health
benefits. Nutr. Food Sci. 46, 217–227.
Ereifej, K. I., Alu’datt, M. H., Alkhalidy, H. A., Alli, I.,
& Rababah, T. 2011. Comparison and characterisation
of fat and protein composition for camel milk from
eight Jordanian locations. Food Chemistry, 127(1), 282
Mati, A., Senoussi-Ghezali, C., Si Ahmed Zennia, S.,
Almi-Sebbane, D., El-Hatmi, H., & Girardet, J.-M.
Dromedary camel milk proteins, a source of
peptides having biological activities – A review.
International Dairy Journal, 73, 25-37.
Attia, H., Kherouatou, N., Dhouib, A., 2001.
Dromedary
milk
lactic
acid
fermentation:
microbiological and rheological characteristics. J. Ind.
Microbiol. Biotechnol. 26, 263–270.
Omar, A., Harbourne, N., & Oruna-Concha, M. J. 2016.
Quantification of major camel milk proteins by capillary
electrophoresis. International Dairy Journal, 58, 31–35.
Hinz, K., Connor, P. M., Huppertz, T., Ross, R. P., &
Kelly, A. L. 2012. Comparison of the principal proteins
in bovine, caprine, buffalo, equine and camel milk.
Journal of Dairy Research, 79(2), 185–191.
El-Agamy, E. I. 2007. The challenge of cow milk
protein allergy. Small Ruminant Research, 68(1), 64
Dreiucker, J., & Vetter, W. 2011. Fatty acids patterns in
camel, moose, cow and human milk as determined with
GC/MS after silver ion solid phase extraction. Food
Chemistry, 126(2), 762–771.
Izadi, A., Khedmat, L., Mojtahedi, S.Y., 2019.
Nutritional and therapeutic perspectives of camel’s milk
and its protein hydrolysates: a review on versatile
biofunctional properties. J. Funct. Foods. 60, 103441.
Tomotake, H., Okuyama, R., Katagiri, M., Fuzita, M.,
Yamato, M., & Ota, F. 2006. Comparison between
Holstein cow’s milk and Japanese-Saanen goat’s milk in
fatty acid composition, lipid digestibility and protein
profile. Bioscience, Biotechnology, and Biochemistry,
(11), 2771–2774.
Chandan, R.C., Kilara, A., 2010. Dairy Ingredients for
Food Processing. Wiley.
Cardoso, R. R. A., Santos, R. M. D. B., Cardoso, C. R.
A., & Carvalho, M. O. 2010. Consumption of camel’s
milk by patients intolerant to lactose. A preliminary
study. Revista Alergia Mexico, 57, 26–32.
Konuspayeva, G., Baubekova, A., Akhmetsadykova, S.,
Akhmetasdykov, N., & Faye, B. 2019. Concentrations
in D-and L-lactate in raw cow and camel milk. Journal
of Camel Practice and Research, 26(1), 111–113.
Kappeler, S. R. 1998. Compositional and structural
analysisof camel milk proteins with emphasis on
protective proteins. ETH, Zurich, Switzerland: Swiss
Federal Institute of Technology. Ph.D. Thesis.
Ziane, M., Couvert, O., Le Chevalier, P., Moussa
Boudjemaa, B., & Leguerinel, I. 2016. Identification
and characterization of aerobic spore forming bacteria
isolated from commercial camel’s milk in south of
Algeria. Small Ruminant Research, 137, 59–64.
Faye, B., Konuspayeva, G., & Bengoumi, M. 2019.
Vitamins of camel milk: A comprehensive review.
Journal of Camelid Science, 12, 17–32.
Ayoub, M.A., Palakkott, A.R., Ashraf, A., Iratni, R.,
The molecular basis of the antidiabetic properties
of Camel’s milk. Diabetes. Res. Clin. Pract. 146, 305–
Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E.,
Qattan, S.Y., Batiha, G.E., Khafaga, A. F., Alagawany,
M., 2020a. Probiotics in poultry feed: a comprehensive
review. J. Anim. Physiol. Anim. Nutr. 104, 1835–1850.
Ashour, E.A., Abd El-Hack, M.E., Shafi, M.E.,
Alghamdi, W.Y., Taha, A.E., Swelum, A.A., El
Saadony, M.T., 2020. Impacts of green coffee powder
supplementation on growth performance, carcass
characteristics, blood indices, meat quality and gut
microbial load in broilers. Agriculture 10, 457.
Al-Saleh, A.A., Metwalli, A.A., Ismail, E.A., Alhaj,
O.A., 2014. Antioxidative activity of camel’s milk
casein hydrolysates. J. Camel Pract. Res. 21 (2), 229
Jrad, Z., Girardet, J.M., Adt, I., Oulahal, N., Degraeve,
P., Khorchani, T., El Hatmi, H., 2014a. Antioxidant
activity of camel’s milk casein before and after in vitro
simulated enzymatic digestion. Mljekarstvo 64, 287
Benkerroum, N., Mekkaoui, M., Bennani, N., & Hidane,
K. 2004. Antimicrobial activity of camel’s milk against
pathogenic strains of Escherichia coli and Listeria
monocytogenes. International Journal of Dairy
Technology, 57(1), 39–43.
Salami, M., Moosavi-Movahedi, A., Ehsani, M.,
Yousefi, R., Haertl´e, T., Jean-Marc Chobert, J. M., …
Niasari-Naslaji,
A. 2010. Improvement of the
antimicrobial and antioxidant activities of camel and
bovine whey proteins by limited proteolysis. Journal of
Agricultural and Food Chemistry, 58(6), 3297–3302.
Othman, A. 2016. Detection of bactericidal activity of
camel’s milk compared with raw and processed cow’s
milk
against
pathogenic
bacteria.
Pharmaceutical Journal, 15(1), 31–37.
Egyptian
Kumar, D., Chatli, M.K., Singh, R., Mehta, N., Kumar,
P., 2016b. Antioxidant and antimicrobial activity of
camel’s milk casein hydrolysates and its fractions.
Small Rumin. Res. 139, 20–25.
Wang, Z., Zhang, W., Wang, B., Zhang, F., Shao, Y.,
Influence of Bactrian camel’s milk on the gut
microbiota. J. Dairy Sci. 101, 5758–5769.
Mal, G., Dande, S. S., Jain, V. K., & Sahani, M. S.
Therapeutic value of camel milk as a nutritional
supplement for multiple drug resistant (MDR)
tuberculosis patients. Israel Journal of Veterinary
Medicine, 61, 88–91.
Shabo, Y., Barzel, R., & Yagil, R. 2008. Etiology of
Crohn’s disease and camel milk treatment. Journal of
Camel Practice and Research, 15(1), 55–59.
Redwan, E., & Tabll, A. 2007. Camel lactoferrin
markedly inhibits hepatitis c virus genotype 4 infection
of human peripheral blood leukocytes. Journal of
Immunoassay and Immunochemistry, 28(3), 267–277.
Mohamad, R. H., Zekry, Z. K., Al-Mehdar, H. A.,
Salama, O., El-Shaieb, S. E., ElBasmy, A. A., …
Sharawy, S. M. 2009. Camel milk as an adjuvant
therapy for the treatment of type 1 diabetes: Verification
of a traditional ethnomedical practice. Journal of
Medicinal Food, 12(2), 461–465.
Agrawal, R. P., Saran, S., Sharma, P., Gupta, R. P.,
Kochar, D. K., & Sahani, M. S. 2007. Effect of camel
milk on residual β-cell function in recent onset type 1
diabetes. Diabetes Research and Clinical Practice,
(3), 494–495.
Agrawal, R. P., Jain, S., Shah, S., Chopra, A., &
Agarwal, V. 2011. Effect of camel milk on glycemic
control and insulin requirement in patients with type 1
diabetes: 2-years randomized controlled trial. European
Journal of Clinical Nutrition, 65(9), 1048.
Ejtahed, H. S., Niasari Naslaji, A., Mirmiran, P., Zraif
Yeganeh, M., Hedayati, M., Azizi, F., & Moosavi
Movahedi, A. 2015. Effect of camel milk on blood
sugar and lipid profile of patients with type 2 diabetes:
A pilot clinical trial. International Journal of
Endocrinology and Metabolism, 13(1), 1–6.
Korish, A. A., Abdel Gader, A. G., Korashy, H. M., Al
Drees, A. M., Alhaider, A. A., & Arafah, M. M. 2015.
Camel
milk attenuates the biochemical and
morphological features of diabetic nephropathy:
Inhibition of Smad1 and collagen type IV synthesis.
Chemico-Biological Interactions, 229, 100–108.
Malik, A., Al-Senaidy, A., Skrzypczak-Jankun, E., &
Jankun, J. 2012. A study of the anti-diabetic agents of
camel milk. International Journal of Molecular
Medicine, 30(3): 585–592.
Abou-Soliman, N. H., Awad, S., & Desouky, M. M.
Effect of digestive enzymes on the activity of
camel-milk insulin. International Journal of Dairy
Technology, 73(2), 341–344.
Nongonierma, A.B., Paolella, S., Mudgil, P., Maqsood,
S., FitzGerald, R.J., 2018. Identification of novel
dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in
camel’s milk protein hydrolysates. Food Chem. 244,
–348.
Nongonierma, A.B., Paolella, S., Mudgil, P., Maqsood,
S., FitzGerald, R.J., 2017. Dipeptidyl peptidase IV
(DPP-IV) inhibitory properties of camel’s milk protein
hydrolysates generated with trypsin. J. Funct. Foods 34,
–58. NPCS Board, 2012.
Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E.,
Zabermawi, N.M., Arif, M., Batiha, G. E., Al-Sagheer,
A.A., 2020b. Antimicrobial and antioxidant properties
of chitosan and its derivatives and their applications: a
review. Int. J. Biol. Macromol. 164, 2726–2744.
Damodharan, K., Palaniyandi, S.A., Yang, S.H., Suh,
J.W., 2016. Functional probiotic characterization and in
vivo cholesterol-lowering activity of Lactobacillus
helveticus isolated from fermented cow’s milk. J.
Microbiol. Biotechnol. 26, 1675–1686.
Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah,
N.P., Ayyash, M., 2017. Characterization of potential
probiotic lactic acid bacteria isolated from camel’s milk.
LWT-Food Sci Technol. 79, 316–325.
Phelan, M., Kerins, D., 2011. The potential role of milk
derived peptides in cardiovascular disease. Food Funct.
, 153–167.
Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F.,
Monnet, V., & Gobbetti, M. 2003. Angiotensin I
converting-enzyme-inhibitory and antibacterial peptides
from lactobacillus helveticus pr4 proteinase-hydrolyzed
caseins of milk from six species. Applied and
Environmental Microbiology, 69(9), 5297.
Soleymanzadeh, N., Mirdamadi, S., Mirzaei, M., &
Kianirad, M. 2019. Novel β-casein derived antioxidant
and ACE-inhibitory active peptide from camel milk
fermented
by Leuconostoc lactis PTCC1899:
Identification and molecular docking. International
Dairy Journal, 97, 201–208.
Tagliazucchi, D., Shamsia, S., & Conte, A. 2016.
Release of angiotensin converting enzyme-inhibitory
peptides during in vitro gastro-intestinal digestion of
camel milk. International Dairy Journal, 56, 119–128.