Integration of Digital Twin Technology for Water Resource Management of Smart Cities and Communities: A Narrative Review
Abstract views: 0 / PDF downloads: 0
Keywords:
Digital Twins, Water Resource Management, Predictive Maintenance, Smart Cities, Flood Risk AssessmentAbstract
Digital Twin (DT) technology has acquired a great amount of significance in the areas of
development engineering. It is increasingly being applied to water resource management, particularly for
the development and maintenance of smart cities and communities. A Digital Twin creates a real-time
digital model of an existing system, contributing to the monitoring and control of a physical system and
aiding in predictive maintenance by carrying out calculated decisions based on analysis. When water
management is concerned, DTs offer visualization of infrastructure along with forecasting demand,
monitoring water quality, and assessing flood risks that can largely contribute to improving operational
efficiency, sustainability, and resilience. These systems combine real-time data and provide connectivity to
the Internet of Things with advanced modelling to optimize resource use and environmental management.
Certain challenges Despite the advantages given, implementing Digital Twin Technology in water systems
faces several challenges. The complex integration issues of diverse systems need to be addressed in order
to harness the potential of Digital Twins completely. Growing concerns about data interoperability, data
privacy, and ownership arise as time passes by. They need to be resolved in order to transform water
management. This review examines the applications, benefits, and challenges of Digital Twin technology
in managing water resources. Simultaneously, it highlights the emerging trends as well as the future
innovations that could drive future developments. It concludes by discussing the transformative role of
Digital Twins in supporting the creation of smarter, more sustainable water systems and communities.
Downloads
References
Ramos, H. M., Morani, M. C., Carravetta, A., Fecarrotta, O., Adeyeye, K., López-Jiménez, P. A., & Pérez-Sánchez, M. (2022). New Challenges towards Smart Systems' Efficiency by Digital Twin in Water Distribution Networks. Water, 14(8), 1304. https://doi.org/10.3390/w14081304
Fuertes, P. C., Alzamora, F. M., Carot, M. H., & Campos, J. A. (2020). Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water Journal, 17(8), 704–713. https://doi.org/10.1080/1573062x.2020.1771382
Chandaluri, R., & Nelakuditi, U. (2022). Monograph on Components, design, and Applications of Digital Twin. INTERNATIONAL JOURNAL OF
Movva, S. S. (2024). Development of digital twins for urban water systems. Journal of Technology and Systems, 6(3), 19–33. https://doi.org/10.47941/jts.1833NEXT-GENERATION COMPUTING. https://doi.org/10.47164/ijngc.v13i3.768
Sabri, S., Alexandridis, K., Koohikamali, M., Zhang, S., & Ozkaya, H. E. (2023). Designing a spatially-explicit urban digital twin framework for smart water infrastructure and flood management. 2023 IEEE 3rd International Conference on Digital Twins and Parallel Intelligence (DTPI), Orlando, FL, USA, 1–9. https://doi.org/10.1109/DTPI59677.2023.10365478
Ghaith, M., Yosri, A., & El-Dakhakhni, W. (2022). Synchronization-Enhanced Deep Learning early flood risk predictions: the core of Data-Driven City Digital Twins for Climate Resilience planning. Water, 14(22), 3619. https://doi.org/10.3390/w14223619
Iancu, G., Ciolofan, S. N., & Drăgoicea, M. (2024). Real-time IoT architecture for water management in smart cities. Deleted Journal, 6(4). https://doi.org/10.1007/s42452-024-05855-9
Hämäläinen, M. (2020). Smart city development with digital twin technology. In Bled eConference. https://api.semanticscholar.org/CorpusID:226716335
Weil, C., Bibri, S. E., Longchamp, R., Golay, F., & Alahi, A. (2023). A systemic review of urban digital twin challenges, and perspectives for sustainable smart cities. Sustainable Cities and Society. https://api.semanticscholar.org/CorpusID:261020154
Ramos, H. M., Kuriqi, A., Coronado-Hernández, O. E., López-Jiménez, P. A., & Pérez-Sánchez, M. (2023). Are digital twins improving urban-water systems efficiency and sustainable development goals? Urban Water Journal, 21(10), 1164–1175. https://doi.org/10.1080/1573062x.2023.2180396
Astarita, V., Guido, G., Haghshenas, S. S., & Haghshenas, S. S. (2024). Risk reduction in transportation systems: The role of digital twins according to a Bibliometric-Based Literature review. Sustainability, 16(8), 3212. https://doi.org/10.3390/su16083212
Lei, B., Janssen, P., Stoter, J. E., & Biljecki, F. (2023). Challenges of urban digital twins: A systematic review and a Delphi expert survey. Automation in Construction. https://api.semanticscholar.org/CorpusID:255536144
Quek, H. Y., Sielker, F., Kraft, M., Akroyd, J., Bhave, A., Von Richthofen, A., Herthogs, P., Yamu, C., Wan, L., Nochta, T., Burgess, G., Lim, M. Q., Mosbach, S., & Balijepalli, V. S. K. M. (2021). The conundrum in smart city governance: Interoperability and compatibility in an ever-growing digital ecosystem. In Proceedings of the Conference on Smart City Ecosystems. https://api.semanticscholar.org/CorpusID:250084932
Ferré-Bigorra, J., Casals, M., & Gangolells, M. (2022). The adoption of urban digital twins. Cities, 131, 103905. https://doi.org/10.1016/j.cities.2022.103905
Abayadeera, M. R., & Ganegoda, G. (2024). Digital twin technology: A comprehensive review. International Journal of Scientific Research and Engineering Trends, 10, 1485–1504. https://doi.org/10.61137/ijsret.vol.10.issue4.199
Tyagi, A. K., & Richa. (2023). Digital twin technology: Opportunities and challenges for smart era's applications. In Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing (IC3-2023) (pp. 328–336). Association for Computing Machinery. https://doi.org/10.1145/3607947.3608015
Saba Daneshgar, Fabio Polesel, Borzooei, S., Sørensen, H. R., Peeters, R., Weijers, S., Ingmar Nopens, & Torfs, E. (2024). A full‐scale operational digital twin for a water resource recovery facility—A case study of Eindhoven Water Resource Recovery Facility. Water Environment Research, 96(3). https://doi.org/10.1002/wer.11016
Li, X., Luo, J., Li, Y., Wang, W., Hong, W., Liu, M., Li, X., & Lv, Z. (2022). Application of effective water-energy management based on digital twins technology in sustainable cities construction. Sustainable Cities and Society, 87, 104241. https://doi.org/10.1016/j.scs.2022.104241
Dinar, A. (2024). Challenges to Water Resource Management: The Role of Economic and Modelling Approaches. Water, 16(4), 610–610. https://doi.org/10.3390/w16040610
Mazzetto, S. (2024). A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability, 16(19), 8337–8337. https://doi.org/10.3390/su16198337
Sharifi, A., Khavarian-Garmsir, A. R., Allam, Z., & Asadzadeh, A. (2023). Progress and prospects in planning: A bibliometric review of literature in Urban Studies and Regional and Urban Planning, 1956–2022. Progress in Planning, 100740. https://doi.org/10.1016/j.progress.2023.100740
Schuh, G., Kelzenberg, C., Wiese, J., & Kessler, N. (2020). Creation of digital production twins for the optimization of value creation in single and small batch production. Procedia CIRP, 93, 222–227. https://doi.org/10.1016/j.procir.2020.04.125
Pesantez, J. E., Alghamdi, F., Sabu, S., Mahinthakumar, G., & Berglund, E. Z. (2022). Using a digital twin to explore water infrastructure impacts during the COVID-19 pandemic. Sustainable Cities and Society, 77, 103520. https://doi.org/10.1016/j.scs.2021.103520
Walton, R. B., Ciarallo, F. W., & Champagne, L. E. (2024). A unified digital twin approach incorporating virtual, physical, and prescriptive analytical components to support adaptive real-time decision-making. Computers & Industrial Engineering, 193, 110241. https://doi.org/10.1016/j.cie.2024.110241
Pedersen, A. N., Borup, M., Brink-Kjær, A., Christiansen, L. E., & Mikkelsen, P. S. (2021). Living and Prototyping Digital Twins for Urban Water systems: Towards Multi-Purpose Value Creation using models and Sensors. Water, 13(5), 592. https://doi.org/10.3390/w13050592Deuerlein, J., Cembrowicz, R. G., & Dempe, S. (n.d.). Hydraulic simulation of water supply networks under control. In Impacts of Global Climate Change (pp. 1–12). https://doi.org/10.1061/40792(173)24
Movva, S. S. (2024). Development of digital twins for urban water systems. Journal of Technology and Systems, 6(3), 19–33. https://doi.org/10.47941/jts.1833
Ciliberti, F. G., Berardi, L., Laucelli, D. B., Ariza, A. D., Enriquez, L. V., & Giustolisi, O. (2023). From digital twin paradigm to digital water services. Journal of Hydroinformatics, 25(6), 2444–2459. https://doi.org/10.2166/hydro.2023.237
Pesantez, J. E., Alghamdi, F., Sabu, S., Mahinthakumar, G., & Berglund, E. Z. (2022). Using a digital twin to explore water infrastructure impacts during the COVID-19 pandemic. Sustainable Cities and Society, 77, 103520. https://doi.org/10.1016/j.scs.2021.103520
Bonilla, C. A., Zanfei, A., Brentan, B., Montalvo, I., & Izquierdo, J. (2022). A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation. Water, 14(4), 514. https://doi.org/10.3390/w14040514
Bernard, M. (2024). Using digital twins to improve pumping and distribution system operations. American Water Works Association, 116(1), 6–15. https://doi.org/10.1002/awwa.2211
Löhner, R., Airaudo, F. N., Antil, H., Wüchner, R., Meister, F., & Warnakulasuriya, S. (2023). High-fidelity digital twins: Detecting and localizing weaknesses in structures. arXiv. https://arxiv.org/abs/2311.10925
Schuh, G., Kelzenberg, C., Wiese, J., & Kessler, N. (2020). Creation of digital production twins for the optimization of value creation in single and small batch production. Procedia CIRP, 93, 222–227. https://doi.org/10.1016/j.procir.2020.04.125
Medeiros, V. d. S., dos Santos, M. D., & Brito, A. V. (2024). Case Study for Predicting Failures in Water Supply Networks Using Neural Networks. Water, 16(10), 1455. https://doi.org/10.3390/w16101455
Deuerlein, J., Cembrowicz, R. G., & Dempe, S. (n.d.). Hydraulic simulation of water supply networks under control. In Impacts of Global Climate Change (pp. 1–12). https://doi.org/10.1061/40792(173)24
Buchberger, S. G., Li, Z., & Tzatchkov, V. G. (2003). Hydraulic characterization of pipe networks subject to stochastic water demands. In Proceedings of the Hydraulic Engineering Conference. https://api.semanticscholar.org/CorpusID:110728914
[31] Kepa, U., & Stanczyk-Mazanek, E. (2014). A hydraulic model is a useful tool in the operation of a water-pipe network. Polish Journal of Environmental Studies, 23, 995–1001.
[32] Balut, A., & Urbaniak, A. (2011). Management of water pipeline networks supported by hydraulic models and information systems. In Proceedings of the 2011 12th International Carpathian Control Conference (ICCC) (pp. 16–21). https://doi.org/10.1109/CarpathianCC.2011.5945807
Medeiros, V. d. S., dos Santos, M. D., & Brito, A. V. (2024). Case Study for Predicting Failures in Water Supply Networks Using Neural Networks. Water, 16(10), 1455. https://doi.org/10.3390/w16101455
Omar, A., Delnaz, A., & Nik-Bakht, M. (2023). Comparative analysis of machine learning techniques for predicting water main failures in the City of Kitchener. Journal of Infrastructure Intelligence and Resilience, 2(3), 100044. https://doi.org/10.1016/j.iintel.2023.100044
Saran, N., Rolland, B., Gill, N., & Motala, I. (2022). Using machine learning techniques to optimize infrastructure investment for the water distribution network. In Pipelines 2022 (pp. 18–24). https://doi.org/10.1061/9780784484302.003
Lumley, D. J., Polesel, F., Sørensen, H. R., & Gustafsson, L.-G. (2024). Connecting digital twins to control collection systems and water resource recovery facilities: From siloed to integrated urban (waste)water management. Water Practice and Technology, 19(6), 2267–2278. https://doi.org/10.2166/wpt.2024.128
Manocha, A., Sood, S. K., & Bhatia, M. (2023). Digital twin-assisted fuzzy logic-inspired intelligent approach for flood prediction. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2023.3322535
Lei, B., Janssen, P., Stoter, J. E., & Biljecki, F. (2023). Challenges of urban digital twins: A systematic review and a Delphi expert survey. Automation in Construction. https://api.semanticscholar.org/CorpusID:255536144
Dhakal, S. R., & Parry, H. (2023). Digital twins for natural landscape management: Opportunities and challenges. MODSIM2023, 25th International Congress on Modelling and Simulation. Retrieved from https://api.semanticscholar.org/CorpusID:260758228
Torfs, E., Nicolaï, N., Daneshgar, S., Copp, J. B., Haimi, H., Ikumi, D., Johnson, B., Plosz, B. B., Snowling, S., Townley, L. R., Valverde-Pérez, B., Vanrolleghem, P. A., Vezzaro, L., & Nopens, I. (2022). The transition of WRRF models to digital twin applications. Water Science and Technology, 85(10), 2840–2853. https://doi.org/10.2166/wst.2022.107
Saporiti, N., Cannas, V. G., Pozzi, R., & Rossi, T. (2023). Challenges and countermeasures for digital twin implementation in manufacturing plants: A Delphi study. International Journal of Production Economics, 261, 108888. https://doi.org/10.1016/j.ijpe.2023.108888
Shahat, E., Hyun, C. T., & Yeom, C. (2021). City Digital Twin Potentials: A Review and Research Agenda. Sustainability, 13(6), 3386. https://doi.org/10.3390/su13063386
El Saddik, A., Laamarti, F., & Alja'Afreh, M. (2021). The potential of digital twins. IEEE Instrumentation & Measurement Magazine, 24(3), 36–41. https://doi.org/10.1109/MIM.2021.9436090
Ingle, N. V., Sable, S. D., Ghadge, D. P., & Mane, S. (2022). Artificial intelligence-based water management system. In 2022 5th International Conference on Advances in Science and Technology (ICAST) (pp. 180–184). https://doi.org/10.1109/ICAST55766.2022.10039523
Wei, Y., Law, A. W. -K., & Yang, C. (2022). Real-Time Data-Processing Framework with Model Updating for Digital Twins of Water Treatment Facilities. Water, 14(22), 3591. https://doi.org/10.3390/w14223591
Raseman, W. J., Kasprzyk, J. R., Rosario-Ortiz, F. L., Stewart, J. R., & Livneh, B. (2017). Emerging investigators series: A critical review of decision support systems for water treatment: Making the case for incorporating climate change and climate extremes. Environmental Science: Water Research & Technology, 3(1), 18–36. https://doi.org/10.1039/C6EW00121A
Nie, X., Fan, T., Wang, B., Li, Z., Shankar, A., & Manickam, A. (2020). Big data analytics and IoT in operation safety management in under water management. Computer Communications, 154, 188–196. https://doi.org/10.1016/j.comcom.2020.02.052
Walshire, L. A., Gonzalez, M. E., Lillycrop, J., Seamster, E., & Winters, K. E. (2023). Water resources infrastructure digital twins: Design, development, and future efforts. In Geo-Congress 2023 (pp. 400–408). https://doi.org/10.1061/9780784484692.041
Huang, S., Wang, G., Yan, Y., & Fang, X. (2020). Blockchain-based data management for digital twin of product. Journal of Manufacturing Systems, 54, 361–371. https://doi.org/10.1016/j.jmsy.2020.01.009
Mohammed, M. A., Lakhan, A., Abdulkareem, K. H., Abd Ghani, M. K., Marhoon, H. A., Kadry, S., Nedoma, J., Martinek, R., & Garcia Zapirain, B. (2024). Industrial Internet of Water Things architecture for data standardization based on blockchain and digital twin technology. Journal of Advanced Research, 66, 1–14. https://doi.org/10.1016/j.jare.2023.10.005
Sumarudin, A., Putra, W. P., Puspaningrum, A., Suheryadi, A., Anam, I. S., Yani, M., & Hanif, I. (2022). Implementation of IoT sensored data integrity for irrigation in precision agriculture using Blockchain Ethereum. 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 29–33. https://doi.org/10.1109/isriti56927.2022.10052902
Lin, Y. -P., Mukhtar, H., Huang, K. -T., Petway, J. R., Lin, C. -M., Chou, C. -F., & Liao, S. -W. (2020). Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework. Sensors, 20(13), 3634. https://doi.org/10.3390/s20133634
Muthukumar, V., Selvakumar, V., Nalini, M., & Chitradevi, B. (2023). Cloud-based smart water management system. In 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS) (pp. 1633–1638). https://doi.org/10.1109/ICSCSS57650.2023.10169753
Shahra, E. Q., Wu, W., Basurra, S., & Aneiba, A. (2024). Intelligent Edge-Cloud framework for water quality monitoring in water distribution system. Water, 16(2), 196.
https://doi.org/10.3390/w16020196
Hazrat, M. A., Hassan, N. M. S., Chowdhury, A. A., Rasul, M. G., & Taylor, B. A. (2023). Developing a Skilled Workforce for Future Industry Demand: The Potential of Digital Twin-Based Teaching and Learning Practices in Engineering Education. Sustainability, 15(23), 16433. https://doi.org/10.3390/su152316433
Menapace, A., Zanfei, A., De Luca, A., Pauli, D. D., & Righetti, M. (2022). Towards a Digital Twin Model for the Management of the Laives Aqueduct. Environmental Sciences Proceedings, 21(1), 70. https://doi.org/10.3390/environsciproc2022021070