Et ve Et Ürünlerinde Teknolojik Gelişmelerin Bilimsel Araştırmalardaki Yeri ve Yapay Zeka Tabanlı Veri Analizi ile Gelecek Trendlerin Tahmin Edilmesi


Abstract views: 0 / PDF downloads: 0

Authors

Keywords:

Et Bilimi, Yapay Zeka, Derin Öğrenme, Hiperspektral Görüntüleme, Blockchain, Akıllı Ambalaj, Hücre Bazlı Et, Gıda Güvenliği, Zaman Serisi Analizi

Abstract

Bu çalışma, et ve et ürünlerinde kullanılan teknolojilerin bilimsel araştırmalardaki eğilimlerini analiz
etmek ve gelecekte hangi alanların ön plana çıkacağını tahmin etmek amacıyla gerçekleştirilmiştir. Son on
yılda hiperspektral görüntüleme, derin öğrenme, bilgisayarlı görme, biyosensörler, blockchain tabanlı
izlenebilirlik, 3D baskı, hücre bazlı et üretimi, soğuk plazma ve akıllı ambalaj gibi teknolojilerin et bilimi
araştırmalarında önemli bir yer edindiği belirlenmiştir.
Zaman serisi analizi (ARIMA), doğrusal regresyon ve kümeleme (K-Means) teknikleri kullanılarak yapılan
tahminler, 2025-2030 yıllarında yapay zeka tabanlı kalite kontrol, hücre bazlı et üretimi ve blockchain ile
gıda izlenebilirliği gibi konuların araştırma odağında olacağını göstermektedir. Regresyon ve korelasyon
analizleri, bu teknolojilerin bilimsel literatürde giderek daha fazla entegre edildiğini ortaya koymuştur.
Sonuçlar, et ve et ürünleri ile ilgili yapay zeka, biyoteknoloji ve dijital izlenebilirlik alanlarında önemli
gelişmeler yaşanabileceği ve bu teknolojilerin et bilimi araştırmalarında yer bulacağını göstermektedir.

Downloads

Download data is not yet available.

Author Biography

Hasan İbrahim KOZAN, Necmettin Erbakan Üniversitesi

Gıda İşleme Bölümü, Meram Meslek Yüksekokulu, Konya, Türkiye

References

H. A. AKYÜREK and H. İ. KOZAN, "Makine Öğrenmesi Algoritmalarını Kullanarak 1990-2023 Yılları Arası Veriler ile Türkiye'de Et Tüketim Talebinin Tahmini Üzerine Kapsamlı Bir Çalışma."

H. I. Kozan and H. A. Akyürek, "Development of a mobile application for rapid detection of meat freshness using deep learning," Теория и практика переработки мяса, vol. 9, no. 3, pp. 249-257, 2024.

M. Kamruzzaman, Y. Makino, and S. Oshita, "Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: A review," Analytica chimica acta, vol. 853, pp. 19-29, 2015.

M. Modzelewska-Kapituła and S. Jun, "The application of computer vision systems in meat science and industry–A review," Meat science, vol. 192, p. 108904, 2022.

D.-W. Sun, Hyperspectral imaging for food quality analysis and control. Elsevier, 2010.

H. Kozan, C. Sarıçoban, H. AKYÜREK, and A. Ünver, "Hyperspectral imaging technique as a state-of-art technology in meat science," Green Chemistry and Technology Letters, 2016.

X. Wu, X. Liang, Y. Wang, B. Wu, and J. Sun, "Non-destructive techniques for the analysis and evaluation of meat quality and safety: A review," Foods, vol. 11, no. 22, p. 3713, 2022.

P. K. Nanda et al., "Emerging role of biosensors and chemical indicators to monitor the quality and safety of meat and meat products," Chemosensors, vol. 10, no. 8, p. 322, 2022.

F. Tian, "An agri-food supply chain traceability system for China based on RFID & blockchain technology," in 2016 13th international conference on service systems and service management (ICSSSM), 2016: IEEE, pp. 1-6.

E. Caron, D. Van de Walle, K. Dewettinck, and F. H. Marchesini, "State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat," Food Research International, p. 114712, 2024.

K. Ramachandraiah, "Potential development of sustainable 3d-printed meat analogues: A review," Sustainability, vol. 13, no. 2, p. 938, 2021.

D. Lupton and B. Turner, "Food of the future? Consumer responses to the idea of 3D-printed meat and insect-based foods," Food and Foodways, vol. 26, no. 4, pp. 269-289, 2018.

S. Birania, A. K. Attkan, and S. Ghanghas, "Cold Plasma: Principles and Applications," Nonthermal Food Engineering Operations, pp. 141-162, 2024.

I. Ahmed et al., "An overview of smart packaging technologies for monitoring safety and quality of meat and meat products," Packaging Technology and Science, vol. 31, no. 7, pp. 449-471, 2018.

W. Wu et al., "Emerging applications of metabolomics in food science and future trends," Food Chemistry: X, vol. 16, p. 100500, 2022.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis. John Wiley & Sons, 2021.

E. S. Gardner Jr, "Exponential smoothing: The state of the art," Journal of forecasting, vol. 4, no. 1, pp. 1-28, 1985.

S. L. Ho and M. Xie, "The use of ARIMA models for reliability forecasting and analysis," Computers & industrial engineering, vol. 35, no. 1-2, pp. 213-216, 1998.

F. Pedregosa et al., "Scikit-learn: Machine learning in python journal of machine learning research," Journal of machine learning research, vol. 12, pp. 2825-2830, 2011.

M. Omar and H. Kawamukai, "Comparison between the Holt-Winters and SARIMA models in the prediction of NDVI in an arid region in Kenya using pixel-wise NDVI time series," Academic Journal of Research and Scientific Publishing, 2021.

M. Vivek and B. R. Prathap, "Spatio-temporal crime analysis and forecasting on twitter data using machine learning algorithms," SN Computer Science, vol. 4, no. 4, p. 383, 2023.

A. K. Jain, "Data clustering: 50 years beyond K-means," Pattern recognition letters, vol. 31, no. 8, pp. 651-666, 2010.

O. Ulucan, D. Karakaya, and M. Turkan, "Meat quality assessment based on deep learning," in 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), 2019: Ieee, pp. 1-5.

Y. Lin, J. Ma, Q. Wang, and D.-W. Sun, "Applications of machine learning techniques for enhancing nondestructive food quality and safety detection," Critical Reviews in Food Science and Nutrition, vol. 63, no. 12, pp. 1649-1669, 2023.

M. J. Post et al., "Scientific, sustainability and regulatory challenges of cultured meat," Nature Food, vol. 1, no. 7, pp. 403-415, 2020.

A. Benny, K. Pandi, and R. Upadhyay, "Techniques, challenges and future prospects for cell-based meat," Food Science and Biotechnology, vol. 31, no. 10, pp. 1225-1242, 2022.

N. R. Rubio, N. Xiang, and D. L. Kaplan, "Plant-based and cell-based approaches to meat production," Nature communications, vol. 11, no. 1, pp. 1-11, 2020.

A. Susanty, N. B. Puspitasari, Z. F. Rosyada, M. A. Pratama, and E. Kurniawan, "Design of blockchain-based halal traceability system applications for halal chicken meat-based food supply chain," International Journal of Information Technology, vol. 16, no. 3, pp. 1449-1473, 2024.

N. Patelli and M. Mandrioli, "Blockchain technology and traceability in the agrifood industry," Journal of food science, vol. 85, no. 11, pp. 3670-3678, 2020.

F. Sander, J. Semeijn, and D. Mahr, "The acceptance of blockchain technology in meat traceability and transparency," British Food Journal, vol. 120, no. 9, pp. 2066-2079, 2018.

S. Lloyd, "Least squares quantization in PCM," IEEE transactions on information theory, vol. 28, no. 2, pp. 129-137, 1982.

Downloads

Published

2025-02-04

How to Cite

KOZAN, H. İbrahim. (2025). Et ve Et Ürünlerinde Teknolojik Gelişmelerin Bilimsel Araştırmalardaki Yeri ve Yapay Zeka Tabanlı Veri Analizi ile Gelecek Trendlerin Tahmin Edilmesi. International Journal of Advanced Natural Sciences and Engineering Researches, 9(2), 157–167. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/2464

Issue

Section

Articles