Dry Cutting Performance of M300 Maraging Steel: Effects of Machining Parameter Variations


Keywords:
300M, Maraging Steel, Machinability, Turning, Cutting Force, Surface RoughnessAbstract
The manufacturing industry continuously faces the demand for new materials with enhanced
performance characteristics. In response, innovative work materials are being developed, tailored to possess
specific mechanical properties for their intended applications. Among these, 300M steel has emerged as a
high strength maraging steel with potential applications across various sectors, including aerospace and
defense. Despite its promising properties, no comprehensive machinability studies on 300M steel have been
reported in the literature. In this study, the machinability of 300M steel was investigated through dry turning
experiments, using feed rates of 0.05–0.10 mm/rev, depths of 0.10–0.20 mm, and cutting speeds of 45–90
m/min. The analysis focused on the influence of these parameters on two critical machinability measures:
cutting force and surface roughness. Graphical evaluations were performed to establish the correlations
between machining parameters and the measured outputs. The study demonstrates that lower cutting forces
are associated with smaller depths of cut and lower feed rates, while higher values of cutting speed are
required. To achieve minimum surface roughness, lower feed rates and depths of cut are necessary, whereas
higher cutting speeds should be employed. These findings not only provide a baseline for machining 300M
steel but also offer valuable insights for optimizing cutting parameters in the manufacturing of maraging
steels.
Downloads
References
Isik, Y. (2007). Investigating the machinability of tool steels in turning operations. Materials & design, 28(5), 1417-1424.
Dan, L. & Mathew, J. K. (1990). Tool wear and failure monitoring techniques for turning—a review. International Journal of Machine Tools and Manufacture, 30(4), 579-598.
Ingarao, G., (2017). Manufacturing strategies for efficiency in energy and resources use: The role of metal shaping processes. Journal of Cleaner Production, 142, 2872-2886.
Kaya, K., Çetin, T., Binali, R., & Gündoğmuş, H. (2025). Finish turning of toolox 33 to improve machining parameters with different nose radius tools. European Mechanical Science, 9(3), 234-245.
Sarıkaya, M., & Güllü, A. (2014). Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65, 604-616.
Koren, Y. (1978). Flank wear model of cutting tools using control theory.
Hakami, F., Pramanik, A., & Basak, A. K. (2017). Tool wear and surface quality of metal matrix composites due to machining: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(5), 739-752.
da Silva, L. R. R., Pereira, A. C., Monteiro, S. N., Kuntoğlu, M., Binali, R., Khan, A. M., ... & Pimenov, D. Y. (2025). Review of advances and challenges in machining of metal matrix composites. Journal of Materials Research and Technology, 37, 1061-1085.
Rao, C. J., Rao, D. N., & Srihari, P. (2013). Influence of cutting parameters on cutting force and surface finish in turning operation. Procedia Engineering, 64, 1405-1415.
Herrera Fernández, M., Martín-Béjar, S., Sevilla Hurtado, L., & Trujillo Vilches, F. J. (2025). Optimizing Cutting Parameters for Enhanced Control of Temperature, Cutting Forces, and Energy Consumption in Dry Turning of Ti6Al4V Alloy. Materials, 18(5), 942.
Kónya, G., & Kovács, Z. F. (2025). Effects of machining parameters, coolant oil composition, and coatings on the output characteristics of turning of X5CrNi18-10 stainless steel. Wear, 205893.
Marcelino, Y. F., Lubis, M. S. Y., & Rosehan, R. (2025). The Effect of Cutting Speed on The Surface Roughness of AISI 1018 Steel in the Dry Turning Process. IRA Jurnal Teknik Mesin dan Aplikasinya (IRAJTMA), 4(2), 1-7.
Singh, J., Gill, S. S., & Mahajan, A. (2024). Experimental investigation and optimizing of turning parameters for machining of al7075-t6 aerospace alloy for reducing the tool wear and surface roughness. Journal of Materials Engineering and Performance, 33(17), 8745-8756.
Fountas, N. A., Papantoniou, I. G., Manolakos, D. E., & Vaxevanidis, N. M. (2024). Experimental Investigation and NSGA-III Multi-Criteria Optimization of 60CrMoV18-5 Cold-Work Tool Steel Machinability Under Dry CNC Hard Turning Conditions. Machines, 12(11), 772.
Mohanta, D. K., Sahoo, B., & Mohanty, A. M. (2024). Experimental analysis for optimization of process parameters in machining using coated tools. Journal of Engineering and Applied Science, 71(1), 38.
Korkmaz, M. E., Yaşar, N., & Günay, M. (2020). Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy. Engineering Science and Technology, an International Journal, 23(3), 664-673.
Korkmaz, M. E., & Günay, M. (2018). Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arabian Journal for Science and Engineering, 43(9), 4863-4870.
Kumar, T. S., Thankachan, T., Čep, R., & Kalita, K. (2024). Machinability studies of Al–4Mg/in-situ MgAl2O4 nano composites: measurement of cutting forces and machined surface roughness. Materials Research Express, 11(4), 046511.
Mechali, A., Hlinka, J., Hajnys, J., Cegan, T., Zelinka, J., Mesicek, J., ... & Petru, J. (2025). Research about SLM 3D printing-M300 maraging steel surface and post-processing characteristics. The International Journal of Advanced Manufacturing Technology, 1-16.
Zhao, G. Y., Liu, Z. Y., He, Y., Cao, H. J., & Guo, Y. B. (2017). Energy consumption in machining: Classification, prediction, and reduction strategy. Energy, 133, 142-157.
Demirpolat, H., Binali, R., Patange, A. D., Pardeshi, S. S., & Gnanasekaran, S. (2023). Comparison of tool wear, surface roughness, cutting forces, tool tip temperature, and chip shape during sustainable turning of bearing steel. Materials, 16(12), 4408.
Kul, B. S., & Yamaner, A. S. A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel. Manufacturing Technologies and Applications, 6(1), 23-32.
Chuangwen, X., Jianming, D., Yuzhen, C., Huaiyuan, L., Zhicheng, S., & Jing, X. (2018). The relationships between cutting parameters, tool wear, cutting force and vibration. Advances in Mechanical Engineering, 10(1).
Binali, R., Demirpolat, H., Kuntoğlu, M., & Salur, E. (2023). Different aspects of machinability in turning of AISI 304 stainless steel: a sustainable approach with MQL technology. Metals, 13(6), 1088.
Binali, R., Yaldız, S., & Neşeli, S. (2021). S960QL yapı çeliğinin işlenebilirliğinin sonlu elemanlar yöntemi ile incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (31), 85-91.
Binali, R. (2023). Parametric optimization of cutting force and temperature in finite element milling of AISI P20 steel. Journal of Materials and Mechatronics: A, 4(1), 244-256.
Demirpolat, H., Kaya, K., Binali, R., & Kuntoğlu, M. (2023). AISI 52100 Rulman Çeliğinin Tornalanmasında İşleme Parametrelerinin Yüzey Pürüzlülüğü, Kesme Sıcaklığı ve Kesme Kuvveti Üzerindeki Etkilerinin İncelenmesi. İmalat Teknolojileri ve Uygulamaları, 4(3), 179-189.
Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: a review. International journal of machine tools and manufacture, 43(8), 833-844.
Asiltürk, İ., Kuntoğlu, M., Binali, R., Akkuş, H., & Salur, E. (2023). A comprehensive analysis of surface roughness, vibration, and acoustic emissions based on machine learning during hard turning of AISI 4140 steel. Metals, 13(2), 437.
Binali, R., Demirpolat, H., Kuntoğlu, M., & Sağlam, H. (2023). Machinability investigations based on tool wear, surface roughness, cutting temperature, chip morphology and material removal rate during dry and MQL-assisted milling of Nimax mold steel. Lubricants, 11(3), 101.
Kuntoğlu, M., Kaya, K., & Binali, R. (2023). Investigation of surface roughness changes in the machining of carbon steel under sustainable conditions. In Int. Conf. Pioneer Innov. Stud (Vol. 1, pp. 163-167).
Ay, E. B., & Madenci, B. (2024). S355j2+ N Çeliğinin Karbür Takımla Frezelenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü Üzerindeki Etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 12(4), 603-615.
Çetin, M., Bilgin, M., Ulaş, H. B., & Tandıroğlu, A. (2011). Kaplamasız Sermet Takımla Aısı 6150 Çeliğinin Frezelenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğüne Etkisi. Ejovoc (Electronic Journal of Vocational Colleges), 1(1), 168-176.
Cakir, M. C., Ensarioglu, C., & Demirayak, I. (2009). Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material. Journal of materials processing technology, 209(1), 102-109.
Sturesson, P. O., Håkansson, L., & Claesson, I. (1997). Identification of statistical properties of cutting tool vibrations in a continuous turning operation—correlation to structural properties. Mechanical Systems and signal processing, 11(3), 459-489.