Genomic Characterization and Antimicrobial Resistance Profiling of Dairy-Derived Lactococcus garvieae Strain MH3


Abstract views: 5 / PDF downloads: 10

Authors

  • Harun ÖNLÜ Muş Alparslan Uni-versity
  • Özlem OSMANAGAOGLU Ankara University

Keywords:

Lactococcus Garvieae MH3, Antibiotic Resistance Genes, Industrial Microorganism, Whole-Genome Sequencing, Pathogen Microorganism

Abstract

Lactococcus garvieae is a Gram-positive bacterium garnering increasing attention for its dual
significance as both an opportunistic pathogen and a potential industrial microorganism. In this study, we
present the whole-genome sequencing and antibiotic resistance gene profiling of L. garvieae strain MH3,
isolated from traditional cow’s milk cheese in Türkiye. The assembled genome consists of 73 contigs,
totaling 2.21 Mb, with a GC content of 37%, 2,244 coding sequences, 7 rRNAs, 51 tRNAs, and 1 tmRNA.
Genome annotation revealed multiple antimicrobial resistance (AMR) determinants, including resistance
to oxacillin, erythromycin, kanamycin, gentamicin, daptomycin, colistin, chloramphenicol, and ampicillin.
The presence of numerous AMR genes highlights the potential public health risk posed by this strain as a
foodborne pathogen Although previous studies have highlighted the considerable industrial and probiotic
potential of L. garvieae strains, our results suggest that the use of L. garvieae MH3 in such applications
should be approached with caution, necessitating comprehensive safety evaluations Overall, this study
underscores the essential role of genomic analyses in evaluating the safety and functional properties of
newly emerging microbial strains.

Downloads

Download data is not yet available.

Author Biographies

Harun ÖNLÜ, Muş Alparslan Uni-versity

Department of Molecular Biology and Genetics, Faculty of Science and Literature,  49250, Muş, Türkiye

Department of Food Processing, Vocational School of Technical Sciences, Muş Alparslan University, 49250, Muş, Türkiye

Özlem OSMANAGAOGLU, Ankara University

Department of Biology, Faculty of Science, 06100, Ankara, Türkiye

References

Vendrell, D., Balcázar, J. L., Ruiz-Zarzuela, I., De Blas, I., Gironés, O., and Múzquiz, J. L. (2006). Lactococcus garvieae in fish: a review, Comparative immunology, microbiology and infectious diseases, 29 (4), 177-198. https://doi.org/10.1016/j.cimid.2006.06.003.

Garvie, E. I., Farrow, J. A., and Phillips, B. A. (1981). A taxonomic study of some strains of streptococci which grow at 10° C but not at 45° C including Streptococcus lactis and Streptococcus cremoris, Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie, 2 (2), 151-165. https://doi.org/10.1016/S0721-9571(81)80037-3.

Lin, Y. et al. (2023). Comparative genomic analyses of Lactococcus garvieae isolated from bovine mastitis in China, Microbiology Spectrum, 11 (3), e02995-22. https://doi.org/10.1128/spectrum.02995-22.

Gibello, A., Galán-Sánchez, F., Blanco, M. M., Rodríguez-Iglesias, M., Domínguez, L., and Fernández-Garayzábal, J. F. (2016). The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods, Research in Veterinary Science, 109, 59-70. https://doi.org/10.1016/j.rvsc.2016.09.010.

Haenen, O. L. M. et al. (2023). Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance, Reviews in Aquaculture, 15 (S1), 154-185. https://doi.org/10.1111/raq.12743.

Francés-Cuesta, C., Ansari, I., Fernández-Garayzábal, J. F., Gibello, A., and González-Candelas, F. (2022). Comparative genomics and evolutionary analysis of Lactococcus garvieae isolated from human endocarditis, Microbial Genomics, 8 (2). https://doi.org/10.1099/mgen.0.000771.

Meyburgh, C., Bragg, R., and Boucher, C. (2017). Lactococcus garvieae: an emerging bacterial pathogen of fish, Diseases of Aquatic Organisms, 123 (1), 67-79.

Sohail, M. et al. (2023). The Threat of Transboundary Zoonosis, Zoonosis, Unique Scientific Publishers, Faisalabad, Pakistan, 4, 701-715.

Wang, C. Y. et al. (2007). Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks, Int J Clin Pract, 61 (1), 68-73. 10.1111/j.1742-1241.2006.00855.x.

Aguado-Urda, M., Gibello, A., Blanco, M. M., López-Campos, G. H., Cutuli, M. T., and Fernández-Garayzábal, J. F. (2012). Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae, PLOS ONE, 7 (6), e40119. 10.1371/journal.pone.0040119.

Aguirre-Guzmán, G., Lara-Flores, M., Sánchez-Martínez, J. G., Campa-Córdova, A. I., and Luna-González, A. (2012). The use of probiotics in aquatic organisms: A review, African Journal of microbiology research, 6 (21), 4845-4857.

Zhang, T., Xie, J., Zhang, M., Fu, N., and Zhang, Y. (2016). Effect of a potential probiotics Lactococcus garvieae B301 on the growth performance, immune parameters and caecum microflora of broiler chickens, Journal of Animal Physiology and Animal Nutrition, 100 (3), 413-421. https://doi.org/10.1111/jpn.12388.

Wang, X.-Y. et al. (2024). Gut Lactococcus garvieae promotes protective immunity to foodborne Clostridium perfringens infection, Microbiology Spectrum, 12 (10), e04025-23. doi:10.1128/spectrum.04025-23.

Ayyash, M. et al. (2020). Exopolysaccharide produced by the potential probiotic Lactococcus garvieae C47: Structural characteristics, rheological properties, bioactivities and impact on fermented camel milk, Food Chemistry, 333, 127418. https://doi.org/10.1016/j.foodchem.2020.127418.

Le, L. T. H. L. et al. (2022). Dual functional roles of a novel bifunctional β-lactamase/esterase from Lactococcus garvieae, International Journal of Biological Macromolecules, 206, 203-212.

Mi, H. et al. (2022). Lactococcus garvieae FUA009, a novel intestinal bacterium capable of producing the bioactive metabolite urolithin A from ellagic acid, Foods, 11 (17), 2621.

Sciuto, S. et al. (2022). What can genetics do for the control of infectious diseases in aquaculture?, Animals, 12 (17), 2176. https://doi.org/10.3390/ani12172176.

Fraser-Liggett, C. M. (2005). Insights on biology and evolution from microbial genome sequencing, Genome research, 15 (12), 1603-1610. http://www.genome.org/cgi/doi/10.1101/gr.3724205.

Wu, C., Huang, J., and Zhou, R. (2017). Genomics of lactic acid bacteria: Current status and potential applications, Critical Reviews in Microbiology, 43 (4), 393-404. https://doi.org/10.1080/1040841X.2016.1179623.

Stefanovic, E., Fitzgerald, G., and McAuliffe, O. (2017). Advances in the genomics and metabolomics of dairy lactobacilli: a review, Food microbiology, 61, 33-49. https://doi.org/10.1016/j.fm.2016.08.009.

Li, W., Wu, Q., Kwok, L.-y., Zhang, H., Gan, R., and Sun, Z. (2024). Population and functional genomics of lactic acid bacteria, an important group of food microorganism: Current knowledge, challenges, and perspectives, Food Frontiers, 5 (1), 3-23. https://doi.org/10.1002/fft2.321.

ONUR, M. and ONLU, H. (2021). Farklı Gıda Ürünlerinden İzole Edilen Laktik Asit Bakterilerinin Bazı Probiyotik Özelliklerinin Belirlenmesi, Avrupa Bilim ve Teknoloji Dergisi, (32), 562-572.

Altschul, S. F. et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic acids research, 25 (17), 3389-3402. https://doi.org/10.1093/nar/25.17.3389.

Grant, J. R. et al. (2023). Proksee: in-depth characterization and visualization of bacterial genomes, Nucleic Acids Res, 51 (W1), W484-w492. 10.1093/nar/gkad326.

Bauer, A., Kirby, W., Sherris, J. C., and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method, American journal of clinical pathology, 45 (4_ts), 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493.

CLSI, C. (2016). Performance standards for antimicrobial susceptibility testing, Clinical Lab Standards Institute, 35 (3), 16-38.

Kant, R., Blom, J., Palva, A., Siezen, R. J., and de Vos, W. M. (2011). Comparative genomics of Lactobacillus, Microbial biotechnology, 4 (3), 323-332. https://doi.org/10.1111/j.1751-7915.2010.00215.x.

Lynch, K. M., Lucid, A., Arendt, E. K., Sleator, R. D., Lucey, B., and Coffey, A. (2015). Genomics of Weissella cibaria with an examination of its metabolic traits, Microbiology, 161 (4), 914-930. https://doi.org/10.1099/mic.0.000053.

Mahmoud, M. M. et al. (2023). Comparative genome analyses of three serotypes of Lactococcus bacteria isolated from diseased cultured striped jack (Pseudocaranx dentex), Journal of Fish Diseases, 46 (8), 829-839. https://doi.org/10.1111/jfd.13792.

Chan, Y.-X. et al. (2024). Genomic investigation of Lactococcus formosensis, Lactococcus garvieae, and Lactococcus petauri reveals differences in species distribution by human and animal sources, Microbiology Spectrum, 12 (6), e00541-24. https://doi.org/10.1128/spectrum.00541-24.

Altinok, I., Ozturk, R. C., and Ture, M. (2022). NGS analysis revealed that Lactococcus garvieae Lg-Per was Lactococcus petauri in Türkiye, Journal of Fish Diseases, 45 (12), 1839-1843. https://doi.org/10.1111/jfd.13708.

Torres-Corral, Y. and Santos, Y. (2022). Predicting antimicrobial resistance of Lactococcus garvieae: PCR detection of resistance genes versus MALDI-TOF protein profiling, Aquaculture, 553, 738098. https://doi.org/10.1016/j.aquaculture.2022.738098.

Thant, E. P. et al. (2024). Exploring Weissella confusa W1 and W2 Strains Isolated from Khao-Mahk as Probiotic Candidates: From Phenotypic Traits to Genomic Insights, Antibiotics, 13 (7), 604. https://doi.org/10.3390/antibiotics13070604.

Downloads

Published

2025-09-21

How to Cite

ÖNLÜ, H., & OSMANAGAOGLU, Özlem. (2025). Genomic Characterization and Antimicrobial Resistance Profiling of Dairy-Derived Lactococcus garvieae Strain MH3. International Journal of Advanced Natural Sciences and Engineering Researches, 9(9), 150–161. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/2824

Issue

Section

Articles