Attention-Enhanced Nested U-Net with Fuzzy Pooling for Medical Image Analysis: A Review


Abstract views: 28 / PDF downloads: 11

Authors

  • Noor M. Basheer University of Mosul
  • Ali Al-Saegh University of Mosul

Keywords:

Medical Image Segmentation MRI, Attention mechanism, Conventional Neural networks, Deep learning models, Nested U-Net, Fuzzy Pooling, Intelligent Segmentation, Dice Score

Abstract

Magnetic resonance imaging (MRI) is the cornerstone of medical diagnosis; however, accurate
segmentation of MRI images remains a challenging task due to noise, low contrast, and complex anatomical
structures. Traditional machine learning and early deep learning methods have achieved moderate success,
but they often struggle to maintain precise boundaries and handle ambiguous areas. Recent innovations,
such as attention mechanisms and multi-scale architectures like the Nested U-Net, have significantly
improved the accuracy of locating and segmenting features. Despite all this, traditional clustering processes
can still cause information loss, especially at object boundaries. In this review, the evolution of MRI
segmentation will be systematically explored through four developmental stages: (1) classical machine
learning, (2) convolutional neural networks (CNNs), (3) deep learning architectures, and (4) optimized
networks. Using attention and fuzzy logic. We will highlight the strengths and limitations of each stage,
and propose an advanced segmentation framework that combines an attention-enhanced nested U-Net with
fuzzy pooling, a technique that integrates soft decision-making to retain uncertain and boundary
information. Preliminary results show improved dice similarity coefficient (DSC) and sensitivity, as well
as decreased Hausdorff distance (HD), especially in complex MRI data sets of the brain and liver. Our
approach shows superior generalization and accuracy to traditional clustering strategies. Future work will
also focus on cross-media adaptation, real-time deployment in clinical settings, and integration of
automated diagnostics.

Downloads

Download data is not yet available.

Author Biographies

Noor M. Basheer, University of Mosul

Computer Engineering Department, College of Engineering, Mosul, Iraq.

Ali Al-Saegh, University of Mosul

Computer Engineering Department, College of Engineering, Mosul, Iraq

References

Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, “Deep learning for brain MRI segmentation: State of the art and future directions,” J. Digit. Imaging, vol. 30, no. 4, pp. 449–459, 2017, doi: 10.1007/s10278-017-9983-4.

L. Shen, Q. Wang, W. Wang, R. Wang, Y. Yu, and C. Zhang, “Deep attention enhanced networks for medical image segmentation,” Proc. SPIE, vol. 13167, no. RSMIP, p. 126, 2024, doi: 10.1117/12.3029812.

X. X. Yin, L. Sun, Y. Fu, R. Lu, and Y. Zhang, “U-Net-based medical image segmentation,” J. Healthc. Eng., vol. 2022, pp. 1–10, 2022, doi: 10.1155/2022/4189781.

M. Ali, S. O. Gilani, A. Waris, K. Zafar, and M. Jamil, “Brain tumour image segmentation using deep networks,” IEEE Access, vol. 8, pp. 153589–153598, 2020, doi: 10.1109/ACCESS.2020.3018160.

A. Motamedi, “IRA-Unet: Inception residual attention U-Net in adversarial network for cardiac MRI segmentation,” in Proc. ACDC 2017, 2023.

Y. Gu, Z. Piao, and S. J. Yoo, “STHarDNet: Swin transformer with HarDNet for MRI segmentation,” Appl. Sci., vol. 12, no. 1, pp. 1–15, 2022, doi: 10.3390/app12010468.

M. O. Khairandish, M. Sharma, V. Jain, J. M. Chatterjee, and N. Z. Jhanjhi, “A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images,” IRBM, vol. 43, no. 4, pp. 290–299, 2022, doi: 10.1016/j.irbm.2021.06.003.

H. Peng and S. Yu, “A systematic IoU-related method: Beyond simplified regression for better localization,” IEEE Trans. Image Process., vol. 30, pp. 5032–5044, 2021, doi: 10.1109/TIP.2021.3077144.

L. Anand et al., “Development of machine learning and medical enabled multimodal for segmentation and classification of brain tumor using MRI images,” Comput. Intell. Neurosci., vol. 2022, pp. 1–12, 2022, doi: 10.1155/2022/7797094.

B. Chen, Y. Liu, Z. Zhang, G. Lu, and A. W. K. Kong, “TransAttUnet: Multi-level attention-guided U-Net with transformer for medical image segmentation,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 1, pp. 55–68, 2024, doi: 10.1109/TETCI.2023.3309626.

E. J. van Kempen et al., “Accuracy of machine learning algorithms for the classification of molecular features of gliomas on MRI: A systematic literature review and meta-analysis,” Cancers (Basel)., vol. 13, no. 11, pp. 9638–9653, 2021, doi: 10.3390/cancers13112606.

T. Tassew, B. A. Ashamo, and X. Nie, “Multimodal MRI brain tumor segmentation using 3D attention UNet with dense encoder blocks and residual decoder blocks,” Multimed. Tools Appl., pp. 1–28, 2024, doi: 10.1007/s11042-024-18942-1.

M. Miledi and S. Dhouib, “VNS metaheuristic based on thresholding functions for brain MRI segmentation,” Int. J. Appl. Metaheuristic Comput., vol. 12, no. 1, pp. 94–110, 2021, doi: 10.4018/IJAMC.2021010106.

H. Cao et al., “Swin-Unet: UNet-like pure transformer for medical image segmentation,” Lect. Notes Comput. Sci., vol. 13803 LNCS, pp. 205–218, 2023, doi: 10.1007/978-3-031-25066-8_9.

P. A. N. Yi, L. I. U. Jin, T. I. A. N. Xu, L. A. N. Wei, and G. U. O. Rui, “Hippocampal segmentation in brain MRI images using machine learning methods: A survey,” Chinese J. Electron., vol. 30, no. 5, pp. 793–814, 2021, doi: 10.1049/cje.2021.06.002.

M. Z. Alom, C. Yakopcic, M. Hasan, T. M. Taha, and V. K. Asari, “Recurrent residual U-Net for medical image segmentation,” J. Med. Imaging, vol. 6, no. 01, p. 1, 2019, doi: 10.1117/1.JMI.6.1.014006.

G. Xu, X. Zhang, X. He, and X. Wu, “LeViT-UNet: Make faster encoders with transformer for medical image segmentation,” Lect. Notes Comput. Sci., vol. 14432 LNCS, pp. 42–53, 2024, doi: 10.1007/978-981-99-8543-2_4.

H. Wang, P. Cao, J. Yang, and O. Zaiane, “MCA-UNet: Multi-scale cross co-attentional U-Net for automatic medical image segmentation,” Health Inf. Sci. Syst., vol. 11, no. 1, pp. 1–14, 2023, doi: 10.1007/s13755-022-00209-4.

N. Varuna Shree and T. N. R. Kumar, “Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network,” Brain Informatics, vol. 5, no. 1, pp. 23–30, 2018, doi: 10.1007/s40708-017-0075-5.

S. Gordon, B. Kodner, T. Goldfryd, M. Sidorov, J. Goldberger, and T. R. Raviv, “An atlas of classifiers—A machine learning paradigm for brain MRI segmentation,” Med. Biol. Eng. Comput., vol. 59, no. 9, pp. 1833–1849, 2021, doi: 10.1007/s11517-021-02414-x.

D. Cheng et al., “Attention based multi-scale nested network for biomedical image segmentation,” Heliyon, vol. 10, no. 14, p. e33892, 2024, doi: 10.1016/j.heliyon.2024.e33892.

Z. Khan, N. Yahya, K. Alsaih, M. I. Al-Hiyali, and F. Meriaudeau, “Recent Automatic Segmentation Algorithms of MRI Prostate Regions: A Review,” IEEE Access, vol. 9, pp. 97878–97905, 2021, doi: 10.1109/ACCESS.2021.3090825.

M. Hamiane and F. Saeed, “SVM classification of MRI brain images for computer-assisted diagnosis,” Int. J. Electr. Comput. Eng., vol. 7, no. 5, pp. 2555–2564, 2017, doi: 10.11591/ijece.v7i1.pp2555-2564.

A. E. Ilesanmi, T. O. Ilesanmi, and B. O. Ajayi, “Reviewing 3D convolutional neural network approaches for medical image segmentation,” Heliyon, vol. 10, no. 6, p. e27398, 2024, doi: 10.1016/j.heliyon.2024.e27398.

A. Magdy, K. N. Ismail, M. H. Mohamed, M. Hassaballah, H. Mahmoud, and M. M. Abdelsamea, “PolyRes-Net: A Polyhierarchical Residual Network for Decoding Anatomical Complexity in Medical Image Segmentation,” IEEE Access, vol. 13, no. Sept. 2024, pp. 15312–15323, 2024, doi: 10.1109/ACCESS.2024.3475877.

J. Chen et al., “TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation,” pp. 1–13, 2021, [Online]. Available: http://arxiv.org/abs/2102.04306

Y. Zhou, Q. Kong, Y. Zhu, and Z. Su, “MCFA-UNet: Multiscale Cascaded Feature Attention U-Net for Liver Segmentation,” IRBM, vol. 44, no. 4, p. 100789, 2023, doi: 10.1016/j.irbm.2023.100789.

M. Jafari and R. Shafaghi, “A Hybrid Approach for Automatic Tumor Detection of Brain MRI Using Support Vector Machine and Genetic Algorithm,” Glob. J. Sci. Eng. Technol., no. 3, pp. 1–8, 2012.

O. Bernard et al., “Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?,” IEEE Trans. Med. Imaging, vol. 37, no. 11, pp. 2514–2525, 2018, doi: 10.1109/TMI.2018.2837502.

W. Guo, “Explainable Artificial Intelligence for 6G: Improving Trust between Human and Machine,” IEEE Commun. Mag., vol. 58, no. 6, pp. 39–45, 2020, doi: 10.1109/MCOM.001.2000050.

T. Chithambaram and K. Perumal, “Brain Tumor Detection and Segmentation in MRI Images Using Neural Network,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 7, no. 3, pp. 155–164, 2017, doi: 10.23956/ijarcsse/v7i3/0164.

D. M. Joshi, N. K. Rana, and V. M. Misra, “Classification of brain cancer using artificial neural network,” in Proc. 2010 2nd Int. Conf. Electron. Comput. Technol. (ICECT), no. June 2010, pp. 112–116, 2010, doi: 10.1109/ICECTECH.2010.5479975.

J. Wu et al., “U-Net combined with multi-scale attention mechanism for liver segmentation in CT images,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, pp. 1–12, 2021, doi: 10.1186/s12911-021-01649-w.

N. S. Punn and S. Agarwal, Modality specific U-Net variants for biomedical image segmentation: a survey, vol. 55, no. 7. Springer Netherlands, 2022, doi: 10.1007/s10462-022-10152-1.

R. Yousef, G. Gupta, N. Yousef, and M. Khari, A holistic overview of deep learning approach in medical imaging, vol. 28, no. 3. Springer Berlin Heidelberg, 2022, doi: 10.1007/s00530-021-00884-5.

K. K. Hiran and R. Doshi, “An Artificial Neural Network Approach for Brain Tumor Detection Using Digital Image Segmentation,” Int. J. Emerg. Trends Technol. Comput. Sci., vol. 2, no. 5, pp. 227–231, 2013.

M. Sharma, “Brain Tumor Segmentation using hybrid Genetic Algorithm and Artificial Neural Network Fuzzy Inference System (ANFIS),” Int. J. Fuzzy Log. Syst., vol. 2, no. 4, pp. 31–42, 2012, doi: 10.5121/ijfls.2012.2403.

D. A. Shoieb, K. M. Fathalla, S. M. Youssef, and A. Younes, “CAT-Seg: cascaded medical assistive tool integrating residual attention mechanisms and Squeeze-Net for 3D MRI biventricular segmentation,” Phys. Eng. Sci. Med., vol. 47, no. 1, pp. 153–168, 2024, doi: 10.1007/s13246-023-01352-2.

D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen, “DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation,” Jun. 2020.

M. H. Guo et al., “Attention mechanisms in computer vision: A survey,” Comput. Vis. Media, vol. 8, no. 3, pp. 331–368, 2022, doi: 10.1007/s41095-022-0271-y.

R. Gu et al., “CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation,” IEEE Trans. Med. Imaging, vol. 40, no. 2, pp. 699–711, 2021, doi: 10.1109/TMI.2020.3035253.

J. Liu et al., “Multi-Scale Hybrid Attention Convolutional Neural Network for Automatic Segmentation of Lumbar Vertebrae From MRI,” IEEE Access, vol. 12, no. January, pp. 77999–78013, 2024, doi: 10.1109/ACCESS.2024.3407833.

S. Kuang et al., “MSCDA: Multi-level semantic-guided contrast improves unsupervised domain adaptation for breast MRI segmentation in small datasets,” Neural Networks, vol. 165, pp. 119–134, 2023, doi: 10.1016/j.neunet.2023.05.014.

M. Bonada et al., “Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field,” Biomedicines, vol. 12, no. 8, 2024, doi: 10.3390/biomedicines12081878.

G. Han et al., “Improved U-Net based insulator image segmentation method based on attention mechanism,” Energy Reports, vol. 7, pp. 210–217, 2021, doi: 10.1016/j.egyr.2021.10.037.

S. R. Gunasekara, H. N. T. K. Kaldera, and M. B. Dissanayake, “A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/6695108.

A. Al-Saegh, “Identifying a Suitable Signal Processing Technique for MI EEG Data,” Tikrit J. Eng. Sci., vol. 30, no. 3, pp. 140–147, 2023, doi: 10.25130/tjes.30.3.14.

A. Dosovitskiy et al., “An Image Is Worth 16×16 Words: Transformers for Image Recognition At Scale,” ICLR 2021 - 9th Int. Conf. Learn. Represent., 2021.

J. Bleker et al., “A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics,” Eur. Radiol., vol. 32, no. 9, pp. 6526–6535, 2022, doi: 10.1007/s00330-022-08712-8.

T. Chithambaram and K. Perumal, “Edge Detection Algorithms Using Brain Tumor Detection and Segmentation Using Artificial Neural Network Techniques,” Int. Res. J. Adv. Eng. Sci., vol. 1, no. 3, pp. 135–140, 2016.

M. K. Müller et al., “Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System Level Simulator,” EURASIP J. Wirel. Commun. Netw., vol. 2018, no. 1, 2018, doi: 10.1186/s13638-018-1238-7.

X. Guan et al., “3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework,” BMC Med. Imaging, vol. 22, no. 1, pp. 1–18, 2022, doi: 10.1186/s12880-021-00728-8.

H. Ye, R. Zhou, J. Wang, and Z. Huang, “FMAM-Net: Fusion Multi-Scale Attention Mechanism Network for Building Segmentation in Remote Sensing Images,” IEEE Access, vol. 10, no. December, pp. 134241–134251, 2022, doi: 10.1109/ACCESS.2022.3231362.

Downloads

Published

2025-10-21

How to Cite

Basheer, N. M., & Al-Saegh, A. (2025). Attention-Enhanced Nested U-Net with Fuzzy Pooling for Medical Image Analysis: A Review. International Journal of Advanced Natural Sciences and Engineering Researches, 9(10), 235–260. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/2866

Issue

Section

Articles