Synthesis and Characterization of TiO₂-Coated n-Dodecanol@MFB Microparticles


Abstract views: 20 / PDF downloads: 32

Authors

  • Cemil Alkan Tokat Gaziosmanpaşa University
  • Nazan Gökşen Tosun Tokat Gaziosmanpaşa University
  • Erdinç Halis Alakara Tokat Gaziosmanpaşa University
  • Sennur Alay Aksoy Süleyman Demirel University

Keywords:

n-dodecanol, microcapsule, PCMs, thermal energy storage, TiO2

Abstract

Current research on phase change materials for thermal energy storage focuses on developing
hybrid functionalities to enhance their applications. These hybrid properties typically include solar heat
harvesting, flame retardancy, and antibacterial properties. Furthermore, cost-effective particle production
remains a key goal for wider availability.
In this study, n-dodecanol, an organic phase change material widely used in cooling and anti-icing systems,
was incorporated into a melamine-formaldehyde resin with boric acid to obtain low-cost microcapsules
with hybrid properties, particularly flame retardancy. Subsequent deposition of TiO2 onto the particle
surface conferred photothermal heat generation and antibacterial properties.
The microencapsulated phase change materials were characterized using DSC to determine their
physicochemical and thermal energy storage properties. The results show that the microcapsules produced
retained more than 50% of the core's latent heat capacity and exhibited high thermal stability over repeated
heating-cooling cycles. The particles were also found to be homogeneous, spherical, and 50-115 um in
diameter.

Downloads

Download data is not yet available.

Author Biographies

Cemil Alkan, Tokat Gaziosmanpaşa University

Department of Chemistry, Tokat, Türkiye

Nazan Gökşen Tosun, Tokat Gaziosmanpaşa University

Department of Medical Services and Techniques, Tokat, Türkiye

Erdinç Halis Alakara, Tokat Gaziosmanpaşa University

Department of Civil Engineering, Tokat, Türkiye

Sennur Alay Aksoy , Süleyman Demirel University

Department of Textile Engineering, Çünür, Isparta, Türkiye

References

L.M. Jiji, S. Gaye, Analysis of solidification and melting of PCM with energy generation, Appl. Therm. Eng. 26 (2006) 568–575. https://doi.org/10.1016/j.applthermaleng.2005.07.008.

B. Zalba, J.M. Marı́n, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng. 23 (2003) 251–283. https://doi.org/10.1016/S1359-4311(02)00192-8.

C. Guo, W. Zhang, Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system, Energy Convers. Manag. 49 (2008) 919–927. https://doi.org/10.1016/j.enconman.2007.10.025.

H. Yin, X. Gao, J. Ding, Z. Zhang, Experimental research on heat transfer mechanism of heat sink with composite phase change materials, Energy Convers. Manag. 49 (2008) 1740–1746. https://doi.org/10.1016/j.enconman.2007.10.022.

E.-B.S. Mettawee, G.M.R. Assassa, Thermal conductivity enhancement in a latent heat storage system, Sol. Energy. 81 (2007) 839–845. https://doi.org/10.1016/j.solener.2006.11.009.

S. Sami, N. Etesami, Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage, Appl. Therm. Eng. 124 (2017) 346–352. https://doi.org/10.1016/j.applthermaleng.2017.06.023.

A. Babapoor, M. Azizi, G. Karimi, Thermal management of a Li-ion battery using carbon fiber-PCM composites, Appl. Therm. Eng. 82 (2015) 281–290. https://doi.org/10.1016/j.applthermaleng.2015.02.068.

S. Harish, D. Orejon, Y. Takata, M. Kohno, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Appl. Therm. Eng. 80 (2015) 205–211. https://doi.org/10.1016/j.applthermaleng.2015.01.056.

H.K. Shin, M. Park, H.-Y. Kim, S.-J. Park, Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials, Appl. Therm. Eng. 75 (2015) 978–983. https://doi.org/10.1016/j.applthermaleng.2014.10.035.

Y. Wang, T.D. Xia, H.X. Feng, H. Zhang, Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage, Renew. Energy. 36 (2011) 1814–1820. https://doi.org/10.1016/j.renene.2010.12.022.

S. Harikrishnan, S. Magesh, S. Kalaiselvam, Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems, Thermochim. Acta. 565 (2013) 137–145. https://doi.org/10.1016/j.tca.2013.05.001.

D. Yang, S. Tu, J. Chen, H. Zhang, W. Chen, D. Hu, J. Lin, Phase Change Composite Microcapsules with Low-Dimensional Thermally Conductive Nanofillers: Preparation, Performance, and Applications, Polymers (Basel). 15 (2023) 1562. https://doi.org/10.3390/polym15061562.

G. Ben Hamad, Z. Younsi, H. Naji, F. Salaün, A Comprehensive Review of Microencapsulated Phase Change Materials Synthesis for Low-Temperature Energy Storage Applications, Appl. Sci. 11 (2021) 11900. https://doi.org/10.3390/app112411900.

C. Xu, H. Zhang, G. Fang, Review on thermal conductivity improvement of phase change materials with enhanced additives for thermal energy storage, J. Energy Storage. 51 (2022) 104568. https://doi.org/10.1016/j.est.2022.104568.

T. Paçacı, C. Alkan, Poly(boron-urethane) shell microencapsulated N-octadecane thermal energy storage materials for extended durability, J. Energy Storage. 59 (2023). https://doi.org/10.1016/J.EST.2022.106491.

A. Babapoor, G. Karimi, Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization, Appl. Therm. Eng. 90 (2015) 945–951. https://doi.org/10.1016/j.applthermaleng.2015.07.083.

X.L. Zhang, X.D. Chen, Q.Z. Zhao, L. Ding, The research on the dispersion effect improvement for nano-copper in erythritol, Mater. Res. Innov. 19 (2015) S1-9-S1-13. https://doi.org/10.1179/1432891715Z.0000000001359.

N. Şahan, M. Fois, H. Paksoy, Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites, Sol. Energy Mater. Sol. Cells. 137 (2015) 61–67. https://doi.org/10.1016/j.solmat.2015.01.027.

T.P. Teng, C.C. Yu, Characteristics of phase-change materials containing oxide nano-additives for thermal storage, Nanoscale Res. Lett. 7 (2012) 611.

S. Harikrishnan, S. Kalaiselvam, Experimental investigation of solidification and melting characteristics of nanofluid as PCM for solar water heating systems, Int. J. Emerg. Technol. Adv. Eng. 3 (2013) 628–635.

X. Wang, Y. Wu, F. Zou, L. Jin, Y. Zhong, C. Ma, Thermal and photocatalytic properties of TiO2 hybrid phase change microcapsules, J. Energy Storage. 102 (2024) 114164. https://doi.org/10.1016/j.est.2024.114164.

S. Sami, N. Etesami, Heat transfer enhancement of microencapsulated phase change material by addition of nanoparticles for a latent heat thermal energy storage system, Energy Reports. 7 (2021) 4930–4940. https://doi.org/10.1016/j.egyr.2021.07.080.

Downloads

Published

2025-10-21

How to Cite

Alkan, C., Tosun, N. G., Alakara, E. H., & Aksoy , S. A. (2025). Synthesis and Characterization of TiO₂-Coated n-Dodecanol@MFB Microparticles . International Journal of Advanced Natural Sciences and Engineering Researches, 9(10), 333–339. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/2877

Issue

Section

Articles