Hydrogen Production and Storage Methods
Abstract views: 1277 / PDF downloads: 602
DOI:
https://doi.org/10.59287/ijanser.647Keywords:
Renewable Energy, Hydrogen, Hydrogen Energy, Hydrogen Production, Hydrogen StorageAbstract
Conventional fuels are not renewable resources and are getting depleted day by day. In addition, the by-products of the combustion of these fuels cause environmental problems. This situation, which threatens the world, has led to the search for new energy sources. Hydrogen, as an energy carrier, creates a potential for solving these problems. Hydrogen is the most abundant element in the universe, with the highest energy content per weight of all conventional fuels. But unlike conventional fuels, hydrogen is not easily found in nature and is produced from primary energy sources. Therefore, it is a renewable fuel. When used in a fuel cell, only water is produced as a by-product. From this point of view, when compared to any fuel, it stands out as a fuel with the highest energy content and does not contain carbon. The biggest problem in using hydrogen gas as a fuel is that it is not found in nature and economically cheap production methods are needed. Hydrogen can be produced in two different ways, biological and chemical. Chemical methods are not preferred because they are costly. Biological methods, on the other hand, are low-cost, sustainable, environmentally friendly methods. In this study, information of hydrogen energy and its historical development is given. Thus, a projection is made for the importance and future of hydrogen energy. Then, hydrogen production methods are explained and compared. In addition, information about hydrogen storage types is given.
Downloads
References
Ahmadi, P., & Khoshnevisan, A. (2022). Dynamic simulation and lifecycle assessment of hydrogen fuel cell electric vehicles considering various hydrogen production methods. International Journal of Hydrogen Energy, 47(62), 26758-26769.
Akın, G. (2006). Küresel ısınma, nedenleri ve sonuçları. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, (46)2, 29-43.
Al, K. & Bayrakdar Ateş, E. (2022). Sürdürülebilir hidrojen üretim teknolojileri: biyokütle temelli yaklaşimlar. Bartın University International Journal of Natural and Applied Sciences , 5 (1) , 18-37 . DOI: 10.55930/jonas.1101384
Ayar, B., Yalçın, Z., & Dağ, M.(2023). Harvesting the Wind: A Study on the Feasibility and Advancements of Wind Energy in Turkey.European Journal of Science and Technology, (49), 43-49
Barbir, F. (2005). PEM electrolysis for production of hydrogen from renewable energy sources. Solar energy, 78(5), 661-669.
Bektaş, B., Hakyemez, C., Yanık Özçelik, D., & Yıldızca, O. (2021). Hidrojen Enerjisi Bilgilendirme Notu. TSKB. Available at: https://www.tskb.com.tr/uploads/file/hidrojen-enerjisi-bilgilendirme-notu-120721.pdf Accessed 25.04.2023
Capurso, T., Stefanizzi, M., Torresi, M., & Camporeale, S. M. (2022). Perspective of the role of hydrogen in the 21st century energy transition. Energy Conversion and Management, 251, 114898.
Chen, H., Zhou, Y., Guo, W., & Xia, B. Y. (2022). Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production. Chinese Chemical Letters, 33(4), 1831-1840.
Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39(3), 390–394. doi:10.1016/s1872-2067(17)62949-8
Çiçek, F. & Aliyeva Çiçek, S. (2022). Hidrojen gazinin üretim yöntemleri ve enerji kaynaği olarak avantaj ve dezavantajlari. Endless light in science 138-142. https://cyberleninka.ru/article/n/hidrojen-gazinin-retim-y-ntemleri-ve-enerji-kayna-i-olarak-avantaj-ve-dezavantajlari
Dodds, P. E., Staffell, I., Hawkes, A. D., Li, F., Grünewald, P., McDowall, W., & Ekins, P. (2015). Hydrogen and fuel cell technologies for heating: A review. International journal of hydrogen energy, 40(5), 2065-2083.
Elberry, M., Thakur, J., Santasalo-Aarnio, A. & Larmi, M. (2021). Large-scale compressed hydrogen storage as part. International Journal of Hydrogen Energy, 46(29), pp. 15671-15690.
Energy. (2023). Available at: https://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting#:~:text=Thermochemical%20water%20splitting%20processes%20use,and%20produces%20hydrogen%20and%20oxygen. Access date: 01.05.2023.
Genç, Ö. & Kallioğlu, M. A. (2018). Proton elektrolit membranli (pem) elektrolizörün sayisal incelenmesi ve deneysel doğrulanmasi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 370-380.
IEA. (2023). Available at: https://www.iea.org/reports/ccus-in-clean-energy-transitions/a-new-era-for-ccus. Access date: 01.05.2023.
Karayel, G. K., Javani, N., & Dincer, I. (2022). Green hydrogen production potential for Turkey with solar energy. International Journal of Hydrogen Energy, 47(45), 19354-19364.
Kayfeci, M., Keçebaş, A., & Bayat, M. (2019). Hydrogen production. In Solar hydrogen production (pp. 45-83). Academic Press.
Koşar, C. (2021). Hidrojen Depolama Yöntemleri. Open Journal of Nano, 6(1), 1-10.
Liu, H. (2009). Analysis of the large scale centralized hydrogen production and the hydrogen demand from fuel cell vehicles in Ontario (Master's thesis, University of Waterloo).
Moradi, R., & Groth, K. M. (2019). Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 44(23), 12254-12269.
Muradov, N. Z., & Veziroǧlu, T. N. (2005). From hydrocarbon to hydrogen–carbon to hydrogen economy. International journal of hydrogen energy, 30(3), 225-237.
Ni, M., Leung, M. K., & Leung, D. Y. (2008). Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International journal of hydrogen energy, 33(9), 2337-2354.
Niemann, M. U., Srinivasan, S. S., Phani, A. R., Kumar, A., Goswami, D. Y., & Stefanakos, E. K. (2008). Nanomaterials for hydrogen storage applications: a review. Journal of Nanomaterials, 2008.
Oliveira, A. M., Beswick, R. R., & Yan, Y. (2021). A green hydrogen economy for a renewable energy society. Current Opinion in Chemical Engineering, 33, 100701.
Öztürk, M. Özek, N. & Yüksel, Y. E. (2010). Doğalgazdan Hidrojen Üretilmesi ve Salınan Karbondioksitin Tutulması. Uluslararası Teknolojik Bilimler Dergisi, 2(2), 1-13.
Pal, D. B., Singh, A., & Bhatnagar, A. (2022). A review on biomass based hydrogen production technologies. International Journal of Hydrogen Energy, 47(3), 1461-1480.
Panić, I., Cuculić, A., & Ćelić, J. (2022). Color-Coded Hydrogen: Production and Storage in Maritime Sector. Journal of Marine Science and Engineering, 10(12), 1995.
Renewables. (2022). Available at: https://www.iea.org/reports/renewables-2022/renewable-electricity#abstract. Access date: 01.05.2023.
Satyapal, S. 2017. Hydrogen: A Clean, Flexible Energy Carrier. EERE. Available at: https://www.en-ergy.gov/eere/articles/hydrogen-clean-flexible-energy-carrier. Accessed 24.04.2023.
Sheriff, S.A., Yogi Goswami, D., Stefanakos, E., & Steinfield, A. 2014. Handbook of Hydrogen Energy. CRC Pres
Singla, S., Shetti, N. P., Basu, S., Mondal, K., & Aminabhavi, T. M. (2022). Hydrogen production technologies-Membrane based separation, storage and challenges. Journal of environmental management, 302, 113963.
Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., ... & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491.
Türe, E. (2021). Deniz taşıtlarında temiz ve tükenmez yakıt hidrojen. Deniz Ticareti. Available at:https://www.denizticaretodasi.org.tr/media/SharedDocuments/DenizTicaretiDergisi/DTO_MART_2021.pdf Accessed 24.04.2023
Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE, 100(2), 410–426. doi:10.1109/jproc.2011.2156750
World Bank. (2023). Available at: https://databank.worldbank.org/source/population-estimates-and-projections#. Access date: 01.05.2023
Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.
Zhang, Q., Change, Z., Fu, M., Ren, T., & Li, X. (2023). Thermal and electrochemical performance analysis of an integrated solar SOEC reactor for hydrogen production. Applied Thermal Engineering, 120603.