Mathematical Model and A Solution Method of the Establishment of Logistics Centres
Abstract views: 94 / PDF downloads: 91
DOI:
https://doi.org/10.59287/ijanser.707Keywords:
Non-Linear Programming, Integer Programming, Linear Programming, Gomory Cut Method, Section Plane, Gradient Method, Cutting PlaneAbstract
In this article, I will give an integer non-linear programming model of the first phase of the three-phase method. The objective function of this model has got an indefinite quadratic form. This problem has not got any exact algorithm. But the variables of the model are special, as these are integer variables, and their values are 0 or 1. If we substitute these variables with new special variables, and change some conditions, the new model will be linear integer programming model. The components of the original objective function are rational numbers (these components are cost components), so it can give a new objective function with integer coefficients. The optimum of this new function will correspond with the original objective function. The new model with the new objective function has got an exact solving method this time.
Downloads
References
M. S. Granovetter. (1965) Getting a job: A study of contracts and careers. Chicago: University of Chicago Press.
R. L. Kahn and E. Boulding, (Eds.). (1964) Power and conflict in organizations. Glencoe, IL: Free Press.
I. Nonaka, (1991) The knowledge-creating company. Harvard Business Review, 69(6): 96–104.
B. Sevitt and J. G. March. (1988) Organizational learning. In W. R. Scott & J. F. Short (Eds.), Annual review of sociology, vol. 14: 319–340. Palo Alto, CA: Annual Reviews.
M. H. Smith. (1980) A multidimensional approach to individual differences in empathy. Unpublished doctoral dissertation, University of Texas, Austin.
M. Gubán and J. Cselényi. (2004) Quadratic linear-programming model to establish delayed assembling plants oriented by logistics, Logistics Networks. Models, Methods and Applications (Ed. T. Bányai, J. Cselényi) University of Miskolc, ISBN 963 661 641 8 pp 279-288
M. Gubán. (2004) Késleltetett (kihelyezett) összeszerelő üzemek logisztika orientált telepítésére szolgáló matematikai modellek és módszerek fejlesztése globalizált termelés esetén PhD. értekezés. Miskolci Egyetem,
M.Gubán, J. Cselényi and D.cVadász. (2003) Comparing method of mathematical programming and heuristic method to establish delayed assembly plants oriented by logistics and examination of these methods. 4th Workshop on European Scientific and Industrial Collaboration May, T. Tóth, P. Bikfalvi, J. Göndri Nagy (Ed.) Published by Institute of Information Science University of Miskolc, ISBN 963 661 570 5 Miskolc Vol. II pp. 587-594,
M. Gubán and J.cCselényi. (2004) The method and analysis of establishment of logistic-oriented postponement assembly plants, Chapter 25, DAAAM International Scientific Book, 2004, Wien, B. Katalinic (Ed.), Published by DAAAM International, ISBN 3 901509 38 0, ISSN 1726 9687, Vienna, Austria pp 255-264
M. Gubán, J. Cselényi and L. Kovács (2001) Methodes for establish of delayed assembling plants oriented by logistics MISKOLCER GESPRÄCHE 2001 Seminarband. 13-14. September, Published by University of Miskolc ISBN 963 661493 8, Miskolc pp.77-83
M. Gubán. (2000) Késleltetett összeszerelő üzemek logisztikaorientált optimális telepítésére szolgáló matematikai modellek. Magyar Tudomány napja. Doktoranduszok fóruma. Miskolci Egyetem, Gépészmérnöki kar szekciókiadványa október 30. pp 19-24
M. Gubán. (2001) Heuristic algorithm to establish delayed assembling plants oriented by logistics. 3rd International Conference of PhD Students. University of Miskolc. 13-19 August ISBN 963 661 480 6 pp 71-76
M. Gubán and J. Cselényi. (2001) Mathematical model and heuristic algorithm to establish delayed assembling plants oriented by logistics. Miskolcer Gesprache
L. Csernyák. (Ed.) (1990) Operációkutatás I.-II., Nemzeti Tankönykiadó.
B. Krekó. (1972) Optimumszámítás (Nemlineáris programozás), Közgazdasági és Jogi Könyvkiadó, Budapest, KG-1802-k-7275 pp 411-415
M. Gubán and J. Udvaros. (2022) A Path Planning Model with a Genetic Algorithm for Stock Inventory Using a Swarm of Drones. Drones. 6(11):364. https://doi.org/10.3390/drones6110364
L. Radácsi, M. Gubán, L. Szabó and J. Udvaros. (2022) A Path Planning Model for Stock Inventory Using a Drone. Mathematics. 10(16):2899. https://doi.org/10.3390/math10162899
O. Takáč, D. Hrubý and V. Cviklovič. (2011) Possibilities of navigation of mobile agricultural robots on the principle of the geometrical objets detections. 1, Bucharest: UNIV Agricultural Sciences & Veterinary Medicine Bucharest, p. 206-208. ISSN: 2284-7995.