Some Results on Generalized Statistical Convergence of Double Sequences via Ideals in Probabilistic Generalized Metric Spaces
Abstract views: 16 / PDF downloads: 8
Keywords:
Probabilistic Generalized Metric Space, J2-Statistical Convergence, J2-Statistical CauchynessAbstract
For double sequences in probabilistic generalized metric spaces (PGMS), we establish the
notions of J2-statistical convergence and J2-statistical Cauchyness in this work and investigate their
fundamental properties, including their interrelationships.
Downloads
References
R. Abazari, “Statistical convergence in probabilistic generalized metric spaces wrt strong topology,” J. Inequal. Appl., 2021(1) (2021), 1–11.
H. Çakallı, “New kinds of continuities,” Comput. Math. Appl., 61(2011), 960–965.
S. Das, A. Ghosh, “J-statistical convergence in probabilistic generalized metric spaces“, preprint, 2024.
P. Das, P. Kostyrko, W. Wilczynski, P. Malik, “I and I^*-convergence of double sequences,” Math. Slovaca, 58(5) (2008), 605-620.
P. Das, E. Savaş, S.Kr. Ghosal, “On generalizations of certain summability methods using ideals,” Appl. Math. Lett. 24(2011), 1509-1514.
P. Das and E. Savaş, “On I-statistically pre-Cauchy sequences,” Taiwanese J. Math., 18(1) (2014), 115–126.
E. Dündar and B. Altay, “I_2-convergence and I_2-Cauchy double sequences,” Acta Math. Sci. 34(2) (2014), 343-353.
E. Dündar and B. Altay, “On some properties of I_2-convergence and I_2-Cauchy of double sequences,” Gen. Math. Notes 7(1) (2011), 1-12.
H. Fast, “Sur la convergence statistique,” Colloq. Math., 2 (1951), 241–244.
M. Gürdal, “Some types of convergence,” Doctoral Dissertation, Suleyman Demirel University, 2004.
M. Gürdal, M.B. Huban, “On I-convergence of double sequences in the topology induced by random 2-norms,” Mat. Vesnik, 66(1) (2014), 73-83.
M. Gürdal, Ö. Kişi, S. Kolanci, “On generalized statistical convergence in g-metric spaces,” Ilirias J. Math., 10(1) (2023), 1–13.
M. Gürdal, Ö. Kişi, S. Kolanci, “New convergence definitions for double sequences in g-metric spaces,” J. Classical Anal., 21(2) (2023), 173–185.
M. Gürdal, A. Şahiner, “Extremal I-limit points of double sequences,” Appl. Math. E-Notes, 8 (2008), 131-137
S. Kolanci, M. Gürdal, Ö. Kişi, “g-metric spaces and asymptotically lacunary statistical equivalent sequences,” Honam Math. J., 45(3) (2023), 503–512.
P. Kostyrko, T. Šalát, W. Wilczyński, “I-convergence,” Real Anal. Exchange, 26(2) (2000/2001), 669-685.
K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28(1942), 535–537.
M. Mursaleen and O. H. H. Edely, “Statistical convergence of double sequences”, J. Math. Anal. Appl., 288, 223-231, 2003.
Z. Mustafa, H. Obiedat, F. Awawdeh, “Some fixed point theorem for mapping on complete G-metric spaces,” Fixed Point Theory Appl., 2008(2008), Article ID 189870.
Z. Mustafa, W. Shatanawi, M. Bataineh, “Existence of fixed point results in G-metric spaces,” Fixed Point Theory Appl., 2009(2009), Article ID 283028.
A. Pringsheim, “Zur theorie der zweifach unendlichen Zahlenfolgen,” Math. Ann., 53, 289-321, 1900.
I. J. Schoenberg, “The integrability of certain functions and related summability methods,” Amer. Math. Monthly, 66 (1959), 361–375.
B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific J. Math., 10(1960), 314–334.
B. Schweizer, A. Sklar, E. Thorp, “The metrization of statistical metric spaces,” Pacific J. Math., 10(1960), 673–675.
B. Schweizer and A. Sklar, “Probabilistic Metric Spaces,” iorth Holland, New York, Amsterdam, Oxford, 1983.
R. M. Tardiff, “Topologies for probabilistic metric spaces,” Pacific J. Math., 65(1976), 233–251.
C. Zhou, S. Wang, L. Ciric, S. Alsulami, “Generalized probabilistic metric spaces and fixed point theorems,” Fixed Point Theory Appl., 2014(2014), 1–15.
C. Zhu, W. Xu, Z. Wu, “Some fixed point theorems in generalized probabilistic metric spaces,” Abstr. Appl. Anal., 2014 (2014), 1–8.