Improving Modulus of Elasticity Prediction in Cement-Based Composites: The Impact of Rubber Particle Incorporation, Nonlinear Regression Optimization, and Hybrid Voigt-Reuss/Reuss-Voigt Models
Abstract views: 36 / PDF downloads: 17
Keywords:
Stiffness, Deformability, Reuss-Voigt Model, Voigt-Reuss Model, Nonlinear RegressionAbstract
This study investigates the influence of rubber particles on the stiffness and deformability of
cement-based composites, with a particular focus on predicting the modulus of elasticity based on the
incorporation rate of rubber particles. Accurate prediction of the modulus of elasticity for these
composites presents a challenge due to the tendency of conventional models to either overestimate or
underestimate this parameter. The Voigt-Reuss and Reuss-Voigt models, employed as predictive bases,
are reliable; however, they exhibit biases in estimating the modulus of elasticity. Nevertheless, these
models prove valuable when optimized using nonlinear regression factors derived from polynomial
equations of nth order. Despite their tendency to skew results, the Reuss-Voigt and Voigt-Reuss models
remain robust tools for predicting the modulus of elasticity of concrete. The optimization process utilizing
the calibration factor significantly enhances their predictive accuracy. This research highlights the
enhancement of predictive accuracy in models for cement-based composites, thereby contributing to a
better understanding and optimal utilization of these materials in structural applications.
Downloads
References
Kurugöl, S.; Tanaçan, L.; Ersoy, H. Y. (2008). Young’s modulus of fiber-reinforced and polymer-modified lightweight concrete composites, Construction and Building Materials, Vol. 22, No. 6, 1019–1028.
De Larrard, F. (1995). une approche de la formulation des betons legers de structure, bulletin de liaison des laboratoires des ponts et chaussees, No. 195.
Belabdelouahab, F.; Trouzine, H.; Hellal, H.; Rahali, B.; Kaci, S. O.; Medine, M. (2018). Comparative Analysis of Estimated Young’s Modulus of Rubberized Mortar and Concrete, International Journal of Civil Engineering, Vol. 16, No. 2, 243–253.
De Larrard, F. (1995). une approche de la formulation des betons legers de structure, bulletin de liaison des laboratoires des ponts et chaussees, No. 195
Belabdelouahab, F.; Trouzine, H.; Hellal, H.; Rahali, B.; Kaci, S. O.; Medine, M. (2018). Comparative Analysis of Estimated Young’s Modulus of Rubberized Mortar and Concrete, International Journal of Civil Engineering, Vol. 16, No. 2, 243–253.
Güneyisi, E.; Gesoğlu, M.; Özturan, T. (2004). Properties of rubberized concretes containing silica fume, Cement and Concrete Research, Vol. 34, No. 12, 2309–2317.
Lydon, F. D.; Balendran, R. V. (1986). Some observations on elastic properties of plain concrete, Cement and Concrete Research, Vol. 16, No. 3, 314–324.
Hansen, T. C. (1965). Influence of aggregate and voids on modulus of elasticity of concrete, cement mortar, and cement paste, Journal Proceedings (Vol. 62), 193–216.
De Larrard, F.; Le Roy, R. (1992). Relation entre formulation et quelques propriétés mécaniques des bétons à hautes performances, Materials and Structures, Vol. 25, No. 8, 464–475.
Granger, L. P.; Bažant, Z. P. (1995). Effect of Composition on Basic Creep of Concrete and Cement Paste, Journal of Engineering Mechanics, Vol. 121, No. 11, 1261–1270.
Hori, M.; Nemat-Nasser, S. (1999). On two micromechanics theories for determining micro–macro relations in heterogeneous solids, Mechanics of Materials, Vol. 31, No. 10, 667–682.
Pal, R. (2005). New models for effective Young’s modulus of particulate composites, Composites Part B: Engineering, Vol. 36, No. 6, 513–523.
Nemat, S.; Hori, M. (1993). Micromechanics: Overall properties of heterogeneous materials, North Holland 561-561.
Christensen, R. M.; Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids, Vol. 27, No. 4, 315–330.
Christensen, R. M. (1990). A critical evaluation for a class of micro-mechanics models, Journal of the Mechanics and Physics of Solids, Vol. 38, No. 3, 379–404.
Baron J. et Sauterey R, (1995), Le Béton Hydraulique, connaissance et pratique, Presse de l'Ecole Nationale des Ponts et chaussées, Paris, France, pp. 277-360.
Timoshenko, S. (1941). Strength of materials, part II. Advanced theory and problems, 245.
Dreux, G.; Festa, J. (1998). Nouveau Guide Du Béton et de Ses Constituants, Eyrolles
Telmat, D. E., Benazzouk, A., Hadjab, H., & Beji, H. (2021). A Comparative study of the influence of rubber particle size on the ductility of cement concrete based on energy’s dissipation method. International Journal of Sustainable Building Technology and Urban Development, 12(1), 61-78.